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ABSTRACT

This paper explores the use of interrupted time-series analysis for estimating the impacts of school re-
structuring programs designed to increase student achievement. The paper first illustrates the approach and con-
siders its strengths and weaknesses. It then describes how to estimate program impacts and their standard errors
from a simple regression model. Next it focuses on the statistical precision of these impact estimates (their mini-
mum detectable effect size) and the research design considerations that affect this precision. The paper concludes
by briefly outlining several important issues related to implementing the approach that will be addressed in future
research.
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This paper explores the use of interrupted time-series analysis for estimating the impacts of programs de-
signed to increase the academic achievement of students in primary and secondary school. This method is particu-
larly relevant for evaluating programs designed to produce school-wide change.

The goals of the paper are to: (1) illustrate how the approach can be used with available data on stan-
dardized test scores, (2) assess the statistical precision of the approach and examine factors that affect this preci-
sion, and (3) briefly outline related issues to be addressed in future research. The paper is part of an ongoing effort
to study the methodological properties of interrupted time-series analysis applied to data for a small number of pe-
riods (short time-series).

Introduction

For the past several decades, there has been considerable pressure to improve primary and secondary edu-
cation in the U.S. This pressure is largely a response to sweeping economic changes caused by advanced technol-
ogy and increased international competition. These changes have made it imperative for American workers to up-
grade their skills, especially less-educated workers, whose standard of living has been declining steadily.i1

 Responses to this need have increasingly come in the form of schoolwide restructuring programs.ii2 Fore-
most among these are Henry Levin’s Accelerated Schools Project,iii3 Ted Sizer’s Coalition of Essential Schools,iv4

James Comer’s School Development Program,v5 and Robert Slavin’s “Success for All” initiative.vi6 Because such
programs are designed to affect all students in a school, it is not possible to implement them for some students but
not for others. Thus one cannot randomly assign individual students from the same school to a program group or
control group.vii7 This makes it difficult to determine what students would have achieved without restructuring
(their “counterfactual”) and thus how restructuring affected their achievement (its “impact”).

Under certain conditions, however, it is possible to estimate the impacts of such programs by measuring
the extent to which student achievement increased relative to its pre-program trend. This quasi-experimental de-
sign — referred to as interrupted time-series analysis — has been used in many different fields.viii8 However, it has
played little role in education research. This is probably due to concerns about: (1) the availability of consistent
data over time, (2) the cost of obtaining data for individual students, (3) the limited precision of aggregate data, if
individual data are not available, (4) confounding local events that can make it difficult to isolate the effect of re-
structuring, and (5) confounding changes in the mix of students which can make it difficult to interpret the effect
of restructuring.ix9

 It is possible, however, to overcome these problems under certain conditions. Thus, we are currently us-
ing interrupted time-series analysis as part of a major evaluation of the Accelerated Schools Project.x10 From our
experience, I believe that this approach can be used in other settings to help improve our understanding of how to
promote educational excellence and equity.

Approach

Consider a school that launched a restructuring program five years ago. Assume that it has administered
the same type of third-grade reading test for the past ten years and has maintained individual student records. Thus
individual scores are available for a five-year baseline period (before the program was launched) and a five-year
follow-up period (the launch year plus four subsequent years).xi11

One simple way to analyze these data is to plot the mean score for each year, as in Figure 1. A line fit
through the means for years minus 5 through minus 1 represents the baseline trend. An extension of this line
through the follow-up period (years zero through four) provides a forecast or prediction of what future mean scores
would have been without restructuring (the counterfactual). The difference between the actual and predicted mean
score for each follow-up year is thus, an estimate of the impact of restructuring for that year. I refer to these differ-
ences (labeled D0 through D4 in the figure) as “deviations from trend.” These deviations illustrate the pattern of
program impacts over time. For example, if the positive impact of a program is delayed several years because of the
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time required for its implementation, one would expect to see negligible deviations from trend at first, followed by
positive ones in later years.

The preceding type of analysis has several important strengths. First, by adjusting for the baseline trend in
test scores, the analysis controls for systemic changes in student performance over time, and thereby reduces the
problem of “maturation”. Second, by comparing future test scores to past test scores for several years — not just
one — the analysis reduces the probability that baseline conditions represent an aberration, and thereby reduces the
potential for “regression artifacts.” Third, because the entire analysis can be summarized in a simple graph that
can be understood readily by many different audiences, it provides an effective way to present impact findings.
Fourth, because the analysis can be used with aggregate data on student test scores (discussed later) when individ-
ual test scores are not available, it has a broad range of potential applications. Fifth, because the analysis does not
require detailed demographic data (although such data can be helpful if available), it can be simple to implement in
practice. Sixth, because the analysis can be expressed as the following regression model, it provides a simple way
to estimate program impacts and their standard errors.xii12

Yi = A + B ti + D0 F0i + D1 F1i + D2 F2i + D3 F3i + D4 F4i + ei (1)

 where:

 Yi = the test score for student i,
 ti = the test year for student i (ranging from - 5 through + 4 in the example),
 F0i = 1 if student i took the test in follow-up year zero and 0 otherwise,
 F1i = 1 if student i took the test in follow-up year one and 0 otherwise,
 F2i = 1 if student i took the test in follow-up year two and 0 otherwise,
 F3i = 1 if student i took the test in follow-up year three and 0 otherwise,
 F4i = 1 if student i took the test in follow-up year four and 0 otherwise,
 ei =the random individual difference in the score for student i, which is assumed to

be independently and identically distributed, with a mean of zero and a variance of σ2,
 A and B = the intercept and slope of the pre-program trend respectively, and
 D0, D1, D2, D3, and D4 = deviations from trend (impact estimates)

for follow-up years 0, 1, 2, 3, and 4 respectively.

The main potential weaknesses of the preceding analysis are “history” and “selection bias.” A problem of history
could arise if a major event — like a change in principal —  coincided with the program and thereby provided an
alternative explanation for the observed deviations from trend. A problem of selection bias could arise if a major
shift in the mix of students coincided with the program and thereby made it difficult to interpret the observed de-
viations from trend.xiii13

Fortunately, by adding schools to the sample, it is possible to address these problems in two different
ways. One way is to replicate the program in a number of different schools, conduct an interrupted time-series
analysis in each, and pool the findings. This will reduce the “expected” overall influence of idiosyncratic local
events (history) and post-program changes in student mix (selection).xiv14 For this purpose it is best to have pro-
gram schools that operate independently of each other (and thus are from different school districts) and that im-
plement the program at different times (and thus are subject to different macro-historical conditions).xv15

A second approach — often referred to as a comparison series design — involves adding an interrupted
time-series analysis for a comparison school which did not implement the program. By defining the baseline and
follow-up periods for the comparison school in accord with those for the program school, and by computing the
comparison school’s deviations from its own baseline trend, a new estimate of the counterfactual is provided. This
estimate predicts for any given follow-up year what the deviation from trend would have been without the program.
The corresponding impact estimate is thus the difference between the program school’s deviation from its trend
and the comparison school’s deviation from its trend.

 However, because of the potential for idiosyncratic local events to occur, a study based only on one pro-
gram school has little methodological protection, even if a comparison school is used. Thus, multiple program and
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comparison schools are highly desirable. Unfortunately, obtaining data for comparison schools (which have noth-
ing to gain from cooperating and much to lose from invidious comparisons) can be much more difficult than ob-
taining data for program schools (that want to demonstrate success). This can become especially problematic for
programs that are being tested in multiple school districtsxvi16 and thus require cooperation from many organiza-
tions to obtain comparison school data.

Thus, in order to use a comparison series design, it probably is necessary to limit the number of school
districts involved — perhaps only to one. A program could then be tested in multiple schools per district, with a
comparison school for each program school. In this context, it might be possible either to: (1) gain access to indi-
vidual data for comparison schools with the help of school district officials; or (2) use aggregate test scores main-
tained by the school district for each school (discussed later).

Thus, in practice, there probably are two viable options for using interrupted time-series analysis to meas-
ure the impacts of education programs: (1) testing a program in multiple school districts without comparison
schools or (2) testing a program in a small number of districts with comparison schools.

Both options can be used to estimate program impacts on student achievement in different subjects (read-
ing, math, science, etc.), for students in different grades (e.g., third graders separately from sixth graders), and for
outcomes other than test scores (e.g., attendance and retention in grade). Furthermore, both options can (and
should) be combined with a detailed qualitative analysis of how a program was implemented, what influenced its
success, and what else happened that might have affected student achievement.xvii17

Precision of the Estimates

One of the first questions to ask when considering the preceding approach is: “how much data are re-
quired?” More specifically: “how many baseline years are needed?” “how many schools are needed”? and “how
large should the schools be?” Another important question to ask is: “how many follow-up years can be included in
the analysis?” All of these questions are about factors that influence the statistical precision of program impact
estimates, and thus to address them requires addressing the issue of precision.

A simple way to represent the precision of a research design is its “minimum detectable effect”.xviii18 In-
tuitively, this is the smallest impact that has a good chance of being identified if it actually exists. The smaller the
minimum detectable effect is, the more precise the design is.

The first step in assessing the minimum detectable effect of a research design is to decide how impacts
will be reported. A popular way to do so, especially for education research, is a measure called “effect size”.xix19

This is simply the impact in its original units (e.g., a scaled test score) divided by the standard deviation of the
original measure for the population or sample of interest. Hence, effect sizes are measured in units of standard de-
viations. Thus, an effect size of 0.25 means a positive impact that is comparable in magnitude to 0.25 standard
deviations. An effect size of - 0.40 means a negative impact that is comparable in magnitude to 0.40 standard
deviations.

Although judgments about whether a specific effect size is large or small are ultimately arbitrary, some
guidelines do exist. Many researchers use the rule of thumb proposed by Cohen (1977, 1988) which suggests that
effect sizes of roughly 0.20 be considered small, 0.50 be considered moderate, and 0.80 be considered large. Lipsey
(1990) provides empirical support for this approach based on the distribution of 102 mean effect sizes obtained
from 186 meta-analyses of treatment effectiveness studies, most of which are from education research. The bottom
third of this distribution (small impacts) ranged from 0.00 to 0.32, the middle third (moderate impacts) ranged
from 0.33 to 0.55, and the top third (large impacts) ranged from 0.56 to 1.26.

In the discussion which follows, I report the statistical precision of alternative interrupted time-series de-
signs in terms of their minimum detectable effect size (MDES) and compare these findings to the preceding guide-
lines. To simplify the discussion, I focus on designs where all schools have the same number of baseline years and
the same number of students per grade (“school size”). These examples provide an intuitive feel for how different
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factors affect statistical precision. In addition they provide a rough guide for making research design decisions. I
begin with the simplest possible case and then extend the findings to more complex cases.

Program Schools Only, Without Cohort Differences

Equation 2 represents the minimum detectable effect size for a specific follow-up year, tf, given an inter-
rupted time-series design with program schools only (see Appendix A). By programming the equation in a spread-
sheet, one can readily determine the precision of this design given different values for its parameters.
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Equation 2 is based on the interrupted time-series model in Equation 1, which assumes that the only
source of random test score variance is individual differences, ei. It does not account for potential random annual
cohort differences which can increase the minimum detectable effect size (discussed later).

All of the relationships in Equation 2 are consistent with intuition. For example, increasing the number of
schools, m, or choosing larger schools, n, reduces the minimum detectable effect size (which is inversely propor-
tional to the square root of both parameters). Also, collecting data for more baseline years, T, reduces the minimum

detectable effect size (both because of the role that T plays in the equation and because 
2
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t tk
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−∑ increases with T).

In all three cases, adding more data reduces the minimum detectable effect size and thereby increases statistical
precision.

The last term in the equation, 
2

( )
_

t tf −  , indicates that the minimum detectable effect size increases for

later follow-up years (as the difference between tf and t
_

 increases). In other words, impact estimates for later fol-
low-up years are less precise than those for earlier years. This makes intuitive sense, because one should have less
confidence in forecasts of the counterfactual for later years than for earlier years.xxii22

Table 1 summarizes the results of Equation 2 for a range of different baseline periods, follow-up years,
and number of program schools, assuming 75 students per grade in each school. This is equivalent to three classes
with 25 students each, which is typical of many urban elementary schools.

First consider the findings for one school. As can be seen, the minimum detectable effect size ranges from
0.39 to 0.90, and is 0.50 or larger in most cases. Hence, the precision of a one-school design is limited. This should
not be surprising because the number of students each year is quite small (75 in the example). Unfortunately, how-
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ever, it implies that studies which attempt to identify or compare impacts for individual schools are doomed to fail-
ure unless the programs they are evaluating produce consistently large impacts.

A second important finding in Table 1 is that statistical precision declines rapidly in later follow-up years.
For a four-year baseline trend, the minimum detectable effect size almost doubles between follow-up year zero and
follow-up year four; for a six-year trend it increases by roughly 50 percent. Hence, there is a limit to how long one
can wait to identify program impacts.

A third important finding is that statistical precision increases substantially as one moves from a four-year
baseline to a five-year baseline, especially for later follow-up years. This improvement is less pronounced as one
moves from a five-year baseline to a six-year baseline. Thus, a five-year baseline might be a good compromise.

Now consider how the number of program schools affects precision. With 10 program schools the mini-
mum detectable effect size approaches the range considered by Cohen (1977, 1988) and Lipsey (1990) to represent
small impacts. For example, with five baseline years, the minimum detectable effect size ranges from 0.13 to 0.23.
With 40 program schools and five baseline years, the minimum detectable effect size ranges from 0.07 to 0.11.

To examine more closely how the number of schools affects precision and to also examine the effect of
“school size,” consider the findings in Table 2. Note that these findings are for the second year after program
launch, given a five-year baseline and no cohort differences.

The pattern of findings in the table reflect the simple fact that the minimum detectable effect size is in-
versely proportional to the square root of both the number of schools and school size. Hence, they exhibit “de-
creasing returns to scale” in terms of improving precision. For example, the marginal gain in precision from the
first 20 schools is many times that for the next 20.

 Differences in precision for school sizes of 50, 75, and 100 students per grade also exhibit decreasing re-
turns to scale, but their pattern is less dramatic because the proportional change in school size represented in the
table (from 50 to 100 students) is far less than that for the number of schools (from 1 to 40 schools).

Program Schools Only, With Cohort Differences

Now consider how the preceding findings change with the introduction of random cohort differences in
student achievement caused by factors that can affect a whole grade at once, such as differences in class dynamics,
changes in teaching staff, or revisions to a the test being used.xxiii 23To account for these differences, the impact
model requires an additional term, ut , which is constant for all students from a school in a given year, but varies
randomly over time. The model for a single school thus becomes:xxiv24

Yi = A + B ti + D0 F0i + D1 F1i + D2 F2i + D3 F3i + D4 F4I + u t + ei         (3)

 where:

Yi =the test score for student i,
ti = the test year for student i (ranging from - 5 through + 4 in the example),
F0i = 1 if student i took the test in follow-up year zero and 0 otherwise,
F1i = 1 if student i took the test in follow-up year one and 0 otherwise,
F2i = 1 if student i took the test in follow-up year two and 0 otherwise,
F3i = 1 if student i took the test in follow-up year three and 0 otherwise,
F4i = 1 if student i took the test in follow-up year four and 0 otherwise,
ei = the random individual difference in the score for student i which is independently

and identically distributed across students in a year with a mean of zero and a
variance of σ2,

ut = the random annual cohort difference in the mean score for year t which is
independently and identically distributed across years with a mean of zero and a
variance of τ2

 A and B = the intercept and slope of the pre-program trend respectively, and
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 D0, D1, D2, D3, and D4 = deviations from trend (impact estimates)
for follow-up years 0, 1, 2, 3 and 4 respectively.

The additional source of year-to-year random error reduces the stability of the baseline trend, which in
turn increases its forecast error, and consequently reduces the precision of program impact estimates. Graphically
this means that in Figure 1 the mean test score for each baseline year will vary more widely around the baseline
trend. This, in turn, implies that the minimum detectable effect size will increase.

Equation 4 represents the minimum detectable effect size in the presence of annual cohort differences (for
a derivation see Appendix B).
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First note the similarities between Equation 4 and Equation 2. In both equations, the minimum detectable
effect size is inversely proportional to the square root of the number of schools, m. Also in both equations, the pro-

portional effect of the number of baseline years (reflected by T and 
2
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−∑ ) and the proportional effect of the

time elapsed between the follow-up year and the baseline period (tf - t
_

) are the same.

However, the minimum detectable effect size in Equation 4 declines by less with respect to school size, n,
than it does in Equation 2, because of the new term, (ρ/(1-ρ)). ρ is the annual intra-class correlation defined as the
proportion of total random variation in test scores due to random cohort differences, or τ2/(τ2+σ2). Thus, ρ can take
on values between zero and one. If ρ equals zero, there are no cohort differences — only individual differences.
Hence, Equation 4 simplifies to Equation 2. If ρ equals one (which is virtually impossible) there are no individual
differences — only cohort differences.

Researchers in other fields have assessed the magnitudes of intra-class correlations for various outcome
measures and different types of groups. Foremost among this work is a series of papers by David Murray and his
colleagues, who estimate intra-class correlations for use in the planning of community trials which test public
health interventions. Because community trials randomly assign whole geographic areas (schools, school districts,
cities, etc.) to treatment and control groups, a knowledge of their intra-class correlations is required to determine
the precision of impact estimates.xxv25

Murray and Short (1995) used survey responses by 18- to 20-year-olds from 15 school districts in Wiscon-
sin and Minnesota to estimate intra-class correlations across districts for measures of reported alcohol consump-
tion. The overwhelming majority of their estimates were less than 0.01.xxvi26 Murray et al. (1994) used findings
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from surveys conducted during the 1980s by eleven different researchers from across the country to estimate intra-
class correlations across schools for measures of reported cigarette use. They focused mainly on three measures,
which had mean intra-class correlations of 0.006, 0.011, and 0.019.xxvii27 Hannan et al. (1994) used survey data for
six cities in upper Minnesota, South Dakota, and North Dakota over several years to estimate intra-class correla-
tions across cities and years for a wide range of health outcomes related to heart disease. Their estimates “gener-
ally were in the range of 0.002 - 0.012.”xxviii28

Unfortunately, it is difficult to generalize these findings to the present analysis because intra-class corre-
lations depend on how groups are defined and the groups used by previous researchers are not the same as annual
student cohorts. Thus we need direct information about the intra-class correlation across annual cohorts for ran-
dom test score variation (residuals) about a linear trend for a single school.

To begin to explore this issue empirically, I estimated values for ρ based on individual standardized math
scores and reading scores for third-graders and sixth-graders from 25 elementary schools in Rochester, New York,
during the four-year period from 1989-90 through 1992-93.xxix29 These intra-class correlations were estimated us-
ing individual residuals from a four-year linear trend for each school (see Appendix C). Separate estimates were
obtained by grade and subject. Hence, there were 25 estimates for third-grade reading (one for each school), 25
estimates for third-grade math, 25 estimates for sixth-grade reading, and 25 estimates for sixth-grade math.

Table 3 summarizes the distributions of these estimates. As can be seen, most estimates were quite small
and thus were consistent with estimates from previous research in other fields.

For reading, the intra-class correlation for the median school was near zero for third-graders and below
0.01 for sixth-graders. Even schools at the 75th percentile had a relatively small intra-class correlation: 0.01 for
third-graders and 0.02 for sixth graders. Thus, three out of four schools had intra-class correlations that were 0.01
or smaller for third-graders and 0.02 or smaller for sixth-graders.

For math, the intra-class correlations were somewhat larger, but in most cases they were still fairly small.
The median school had a value 0.02 for both third-graders and sixth-graders. However, schools at the 75th percen-
tile had values of 0.04 and 0.07, respectively. Hence, for some schools the intra-class correlation for math was sub-
stantial, but for most it was still within the range of values observed in other fields.

To illustrate how the intra-class correlation can affect the precision of impact estimates from an inter-
rupted time-series analysis, Equation 4 was used to compute values of the minimum detectable effect size for intra-
class correlations of 0.01, 0.03, and 0.05. Several tentative conclusions emerge from these findings, which are pre-
sented in Table 4.

First, the intra-class correlation makes a big difference in precision. For example, the minimum detectable
effect size for 10 schools and 75 students per grade is 0.23, 0.32, and 0.39 for ρ equal to 0.01, 0.03, and 0.05 re-
spectively. Thus as ρ increases a little, the minimum detectable effect size increases a lot.

Second, accounting for ρ makes it even more clear that meaningful impact estimates for individual
schools probably are not feasible. The minimum detectable effect size for one school equals 0.74, 1.01, or 1.24
when ρ equals 0.01, 0.03, or 0.05, respectively. These imply very large impacts, which are quite unlikely to be
achieved in practice.

Third, as ρ increases, the influence of school size on the precision of impact estimates declines apprecia-
bly. For example, with ρ equal to 0.01, the minimum detectable effect size for one school with 50 versus 100 stu-
dents per grade is 0.83 versus 0.68; for ρ equal to 0.05, the corresponding minimum detectable effect sizes are 1.30
and 1.20, respectively.

Fourth, and perhaps most important, is that between 10 and 20 program schools might provide adequate
statistical precision for an impact study. For values of ρ around 0.01, which is what the Rochester findings suggest,
the minimum detectable effect size for 10 program schools ranges from 0.26 to 0.22 and those for 20 schools range
from 0.19 to 0.15. Even for values of ρ around 0.03 (which is beyond most estimates of intra-class correlations
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obtained to date), the minimum detectable effect size for 10 schools ranges from 0.34 to 0.31 and that for 20
schools ranges from 0.24 to 0.22.

Adding Comparison Schools

Now consider what happens to the precision of impact estimates if we add comparison schools to the re-
search design. Recall that the purpose of adding comparison schools is to help guard against problems of history
and selection. Hence, they strengthen the research design in this regard. However, this additional methodological
strength comes at the cost of reduced statistical precision. Fortunately this reduction is not insurmountable, so that
using a comparison series design can be justified if appropriate data are available.

For a design with: one comparison school per program school, all schools having the same number of stu-
dents per grade, and all schools having the same number of baseline years, one can simply multiple the minimum

detectable effect size for any number of program schools by 2 (approximately 1.414) to obtain its counterpart for
a comparison series design (see Appendix D). This holds both for Equations 2 and 4 and, thus, for all findings in
Tables 1, 2, and 4.

For example, recall that the minimum detectable effect size in Table 4 for 10 schools, 75 students per
grade per school, and ρ equal to 0.01 was 0.23. Adding a comparison school for each program school increases the
minimum detectable effect size to approximately 1.414(0.23) or 0.33, which is still in range of small to moderate
impacts.

Further Research

This paper has argued that interrupted time-series analysis has a potentially important role to play in the
evaluation of programs that are intended to affect whole-school change. Indeed the findings presented above sug-
gest that baseline test data from 10 to 20 program schools for five or six years might be adequate to provide defen-
sible impact estimates for three to five follow-up years.

Therefore I believe that additional research is warranted to further explore the methodological properties
of this approach and its feasibility in practice. Some of this research is underway currently as part of our evaluation
of the national Accelerated Schools Project. In this final section, I briefly outline what has been done and what else
is planned. Future papers will report on this research.

Using Aggregate Data

As discussed earlier, one major concern about using interrupted time-series analysis for research in edu-
cation is the potential lack of adequate data. However, this problem could be reduced substantially if it were possi-
ble to use average annual test scores. School districts often publish such data by school, and data are becoming
increasingly available through the Internet.

Fortunately, it may be possible to use this aggregate data because annual average test scores, like those
plotted in Figure 1, can provide impact estimates that are identical to those obtained by estimating Equation 1 or
Equation 3 from data on individual test scores.xxx30 In addition aggregate data can provide valid estimates of the
standard error of impact estimates. What is lost, however, when moving from individual data to aggregate data, is
a certain amount of statistical precision due to the limited number of aggregate observations, and thus the limited
number of degrees of freedom available to estimate standard errors. We have developed a method for comparing
the minimum detectable effect size of aggregate versus individual data, and our preliminary findings suggests that
five or six years of aggregate baseline data plus subsequent aggregate follow-up data may be adequate for an inter-
rupted time-series analysis with 10 to 20 program schools.

Pooling Across Schools
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As noted earlier, one school is not enough to estimate the impacts of an education program — for any
methodology, not just the present one. Thus pooling findings across a number of schools is essential. We therefore
are exploring issues that arise when doing so as part of the Accelerated Schools evaluation.

In particular, we are considering how best to pool findings across different schools which used different
tests, although each school used the same test over time. To do so, we will convert all scores for each school into z
scores defined in terms of its baseline mean and standard deviation. This will convert all impact estimates to an
effect size metric, which in turn will facilitate two ways of pooling: (1) computing separate impact estimates for
each school and pooling the estimates or (2) pooling the data and computing one estimate.

Assessing Equity Impacts

This paper has focused on mean student achievement, implicitly as a measure of educational excellence.
But educational excellence can be attained in different ways which have different equity implications. For example,
programs that emphasize enrichment for “gifted and talented” students can increase mean achievement by in-
creasing the test scores of students with the strongest backgrounds. This, in turn, can broaden the gap between stu-
dents with the strongest backgrounds and those with the weakest. In contrast, initiatives which pay special atten-
tion to “at risk” students — like Accelerated Schools — can raise mean achievement while reducing the gap
between students at the top and students at the bottom of the achievement distribution.

Therefore one way to assess the equity implications of an educational program is to measure its effect on
the standard deviation of student test scores. Using interrupted time-series analysis we plan to do this for the Ac-
celerated Schools evaluation. For every school in the sample, we will estimate how the standard deviation for each
follow-up year differed (deviated) from its pre-program trend.

Exploring Alternative Trends

The present paper focused only on linear baseline trends. This was done both because linear functions are
used widely for many types of research, and because a preliminary analysis of time-series data for Rochester test
scores suggests that linear trends may be appropriate. However, we also plan to examine several alternative func-
tional forms. In particular, we will consider forecasting future mean test scores from: (1) the overall mean baseline
score (which assumes no systemic change over time), (2) a quadratic function of time (which allows the change in
test scores to accelerate or decelerate over time), and (3) a logarithmic function of time (which allows the change
in test scores to decelerate over time).
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Table 1

Minimum Detectable Effect Size
By Baseline Period, Follow-up Year and Number of Program Schools
(for 75 students per grade, no comparison schools and no cohort differences)

Follow-up Baseline Period
Year Four Years Five Years Six Years

1 Program School
 Zero 0.46 0.42 0.39
 One 0.56 0.48 0.44
 Two 0.67 0.56 0.49
 Three 0.78 0.63 0.55
 Four 0.90 0.71 0.60

10 Program Schools
 Zero 0.14 0.13 0.13
 One 0.18 0.15 0.14
 Two 0.21 0.18 0.16
 Three 0.25 0.20 0.17
 Four 0.28 0.23 0.19

40 Program Schools
 Zero 0.07 0.07 0.06
 One 0.09 0.08 0.07
 Two 0.11 0.09 0.08
 Three 0.12 0.10 0.09
 Four 0.14 0.11 0.10

Table 2

Minimum Detectable Effect Size
By Number of Program Schools and Students Per Grade
(for follow-up year 2, with 5 baseline years and no cohort differences)

Number of Students per Grade
Program Schools 50 Students 75 Students 100 Students
 1 School 0.68 0.56 0.48
 5 Schools 0.30 0.25 0.22
 10 Schools 0.22 0.18 0.15
 20 Schools 0.15 0.12 0.11
 30 Schools 0.12 0.10 0.09
 40 Schools 0.11 0.09 0.08
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Table 3

Distribution of Estimated Intra-Class Correlations
For Individual Residuals from a Four-Year Linear Time-Trend
For 25 Elementary Schools from Rochester, New Yorka

Third Grade Sixth Grade
Reading Math Reading Math

25th percentile 0.00 0.00 0.00 0.00
50th percentile (median) 0.00 0.02 <0.01 0.02
75th percentile 0.01 0.04 0.02 0.07
aFor standardized reading and math tests administered to third-graders and sixth-graders each year between 1989-
90 and 1992-93.

Table 4

Minimum Detectable Effect Size
By Number of Program Schools,
Students Per Grade, and Intra-Class Correlation
(for follow-up year 2, with 5 baseline years and cohort differences)

Number of Program
Schools

Students per Grade

50 Students 75 Students 100 Students
Intra-Class Correlation = 0.01

 1 School 0.83 0.74 0.68
 5 Schools 0.37 0.33 0.31
 10 Schools 0.26 0.23 0.22
 20 Schools 0.19 0.17 0.15
 30 Schools 0.15 0.13 0.12
 40 Schools 0.13 0.12 0.11

Intra-Class Correlation = 0.03
 1 School 1.09 1.01 0.97
 5 Schools 0.49 0.45 0.44
 10 Schools 0.34 0.32 0.31
 20 Schools 0.24 0.23 0.22
 30 Schools 0.20 0.19 0.18
 40 Schools 0.17 0.16 0.15

Intra-Class Correlation = 0.05
 1 School 1.30 1.24 1.20
 5 Schools 0.58 0.55 0.54
 10 Schools 0.41 0.39 0.38
 20 Schools 0.29 0.28 0.27
 30 Schools 0.24 0.23 0.22
 40 Schools 0.21 0.20 0.19
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Appendix A

The Minimum Detectable Effect Size for
Program Schools Only, Without Cohort Differences

This appendix derives the minimum detectable effect size (MDES) for a single follow-up year from an
interrupted time-series design with program schools only and no cohort differences (Equation 2 in the paper).
Some of the notation and conventions in this appendix differ from those in the paper, because the paper was sim-
plified to facilitate the discussion.

Consider an interrupted time-series analysis for a single program school with a T-year baseline period that
begins in year t1 and ends in year tT. Thus a five-year baseline period would run from t1 to t5, and the follow-up
period would comprise a program launch year in t6, a first follow-up year in t7, and so on. Assume that n students
take the test each year.

The program impact for a single follow-up year, tf, can be estimated as Df from the following regression
model using data for the baseline period and the follow-up year.xxxi

Yki = A + B tki + Df Ffki + eki  (A1)

where:

Yki = the test score for student i in year k (recall that different students take the
test each year),xxxii32

tki = the year indicator for student i in year k (equal to k),
Ffki = one for students who took the test in follow-up year tf and zero otherwise,
A = the intercept of the baseline trend,
B = the slope of the baseline trend,
Df = the deviation from trend (program impact) in follow-up year tf, and
eki = the random individual difference for student i in year k, which is

independently and identically distributed with a mean of zero and a
 constant variance of σ2.

Deriving the Variance of the Impact Estimate

The estimated deviation from trend
∧

Df is equal to the mean test score for the follow-up year Yf

−

 minus the

predicted test score for that year 
∧

Yf . In other words:

∧ − ∧
= −D Y Yf f f   (A2)

where:

Y A Btf f

∧ ∧ ∧
= +   (A3)

Thus

VAR D VAR Y VAR Yf f f( ) ( ) ( )
∧ − ∧

= +   (A4)

Given the properties of eki in Equation 1,
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VAR Y
n

f( )
−

=
2σ

  (A5)

To obtain VAR Yf( )
∧

first note that:

VAR Y VAR A Btf f( ) ( )
∧ ∧ ∧

= +    (A6)

and thus

VAR Y VAR A t VAR B t COV A Bf f f( ) ( ) ( ) ( , )
∧ ∧ ∧ ∧ ∧

= + +2 2    (A7)

Applying expressions for the variances and covariance of the intercept and slope of a bivariate regression (Pindyck
and Rubinfeld, 1998, pp. 63-64) and simplifying, yields:
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where 
k

k

T∑ ∑= =1 and 
i

i

n∑ ∑= =1

Substituting Equations A8-A10 into Equation A7 and simplifying yields:
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Expanding 2tk
k
∑ and simplifying yields:
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Substituting Equations A12 and A5 into Equation A4 and simplifying yields:
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Equation A13 represents the standard error of forecast for a bivariate regression (Pindyck and Rubinfeld,
1998, p. 208) applied to mean annual test scores for the baseline period and the follow-up year.

Generalizing to Multiple Program Schools

Extending Equation A13 to a mean impact estimate, Df

_

, for m program schools with the same grade size, number

of baseline years and individual test variance, σ2, yields:

VAR D
mn T

t t

t t

f
f

k
k

( )
( )

( )

_
_

_
[ ]= + + −

−∑

2
2

2
1

1σ
 (A14)

Obtaining the Minimum Detectable Effect
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Bloom (1995) demonstrates that the minimum detectable effect of an impact estimator is a simple multiple
of its standard error. For a one-tail hypothesis test at the 0.05 level with 80 percent power, the multiple is 2.5.
Thus:

MDE D VAR D
mn T

t t

t t

f f
f

k
k

( ) . ( )
. ( )

( )

_ _
_

_
= = + + −
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2

2
σ

  (A15)

Obtaining the Minimum Detectable Effect Size

Dividing Equation A15 by the standard deviation of individual test scores each year, σ, yields the mini-
mum detectable effect size. Therefore:
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Appendix B

The Minimum Detectable Effect Size for
Program Schools Only With Cohort Differences

This appendix derives the minimum detectable effect size for an interrupted time-series model with ran-
dom year-to-year cohort differences. To do so, first note that Equation A14 from Appendix A (without cohort dif-
ferences) can be re-expressed as follows:

VAR D
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t t

t t

f
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k
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( ) ( )
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_
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_
[ ]= + + −
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2
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t t

t t

k f
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( ) ( )
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_ _

_
[ ]1

1
2

2
      (B1)

where 
_

ek  is the mean value of eki for year k and VAR ek( )
_

is the year-to-year variance of this mean.

Now consider the interrupted time-series model for one follow-up year, tf, and a random year-to-year co-
hort difference, uk:

 Yki = A + B tki + Df Ffki + uk + eki        (B2)

where

Yki  = the test score for student i in year k,
tki  = the year indicator for student i in year k (equal to k),
Ffki =  one for students who took the test in follow-up year tf and zero otherwise,
A  = the intercept of the baseline trend,
B  =the slope of the baseline trend,
Df  = the deviation from trend (program impact) in follow-up year tf, and
eki  = the random individual difference for student i in year k, which is

independently and identically distributed across students, with a mean of
zero and a variance of σ2,

uk  = the random annual cohort difference for year k, which is constant for all
students in year k and is independently and identically distributed across
years, with a mean of zero and a variance of τ2.

The year-to-year variance of mean annual test scores around the trend for this model is:

VAR u e
n

k k( )
_

+ = +2
2

τ
σ

     (B3)

Re-expressing Equation B3 in terms of σ2 and the intra-class correlation, ρ, defined as τ2/(τ2+σ2), yields:
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Replacing VAR(
_

ek ) in Equation B1 with the expression for VAR u ek ki( )
_

+  in Equation B4 and simplifying

yields:
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Converting VAR(
_

Df ) to it counterpart expression for the minimum detectable effect size, as was done in Appen-

dix A, thus yields:xxxiii33
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Equation B6 is presented as Equation 4 in the paper.
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Appendix C

Estimating the Intra-Class Correlation
for Annual Cohort Effects

This appendix describes how estimates were obtained for the intra-class correlation due to annual cohort
effects. Estimates were based on individual scores for third-grade and sixth-grade math and reading tests for 25
elementary schools in Rochester, New York, during the four years from 1989-90 through 1992-93. Student scores
were from the Pupil Evaluation Program (PEP) test, which is administered annually throughout New York State.
The average number of third graders per year per school in the sample ranged from 29 to 121, with a mean of 71.
The corresponding number of sixth graders ranged from 21 to 96, with a mean of 54.

The model used for this analysis was:

Yki = A + B tki + uk + eki   (C1)

where:

Yki = the test score for student i in year k,
tki = the year indicator for student i in year k (equal to k),
A = the intercept of the baseline trend,
B = the slope of the baseline trend,
uk = the random annual cohort difference for year k, which is constant for all

students in year k and is independently and identically distributed across
years, with a mean of zero and a variance of τ2,

 eki =the random individual difference for student i in year k, which is
independently and identically distributed across students, with a mean of
zero and a variance of σ2.

This model for a single school specifies a linear trend in test scores over time with an individual stochastic compo-
nent, eki, and a cohort stochastic component, uk. The intra-class correlation, ρ, for these two stochastic components
is thus τ2/(τ2+σ2).

Estimates of the intra-class correlation were obtained by school, grade and subject. For each school, ordi-
nary least squares (OLS) was used to estimate the regression in Equation C1 from the four years of available scores
for a particular grade and subject. Next τ2 and σ2 were estimated from the residuals of this regression using SAS
VARCOMP.xxxiv34 These findings were used to compute an intra-class correlation for each school which, in turn,
were ranked from lowest to highest. Summary statistics in Table 3 of the paper were obtained from the resulting
distribution for each grade and subject.
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Appendix D

The Minimum Detectable Effect Size
for Program and Comparison Schools
With or Without Cohort Differences

Perhaps the simplest way to think about adding comparison schools to the basic interrupted time-series
design is to pool all deviations from trend for a specific follow-up year, tf, for program schools (as we have been
doing) and then to separately pool all deviations from trend for comparison schools for each corresponding follow-

up year. For each follow-up year this would provide a mean deviation from trend for program schools, 
_

Dfp , and a

mean deviation from trend for comparison schools, 
_

Dfc .  The difference between these two deviations from trend

is the program impact estimate. In the simplest case, with one comparison school for each program school, and
each school having the same number of students per grade, n, and the same number of baseline years, T, the vari-
ance of the impact estimate is:xxxv35

VAR D D VAR D VAR Dfp fc fp fc( ) ( ) ( )
_ _ _ _

− = +     (C1)

For research design purposes, one can assume that the variance components for program schools are roughly the
same as those for comparison schools. Thus

VAR D D VAR Dfp fc fp( ) ( )
_ _ _

− = 2     (C2)

This implies that the standard error of an impact estimate which includes comparison schools equals the 2  times
the standard error of an impact estimate without comparison schools. Thus the minimum detectable effect size with

comparison schools equals the 2 times the minimum detectable effect size without comparison schools. This
finding holds both with or without annual cohort differences.
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Notes

1See, for example, Levy (1998), Blank (1997), and Burtless (1990).
2Murphy (1993) provides a brief review of these programs.
3See, for example, Levin (1993).
4See, for example, Prestine (1993).
5See, for example, Barnett (1996).
6See, for example, Slavin et al. (1993).
7It might be possible to randomly assign students from a pool of volunteers to a “program school” that has re-

structured (see Cave and Kagehiro, 1995). However, this is only possible under special circumstances. In addition,
for some initiatives — such as a new curriculum component — it might be possible to randomly assign whole
schools to a program or a control group. Raudenbush (1997) provides a theoretical discussion of the statistical
properties of this “cluster random assignment” approach; and Bloom, Bos, and Lee (1998) provide an empirical
analysis of these properties. In addition, Cook et al. (forthcoming) used the approach to evaluate Comer’s Student
Development Program in Prince George’s County Maryland, and Cook et al. (1999) used it to evaluate Comer’s
program in Chicago. However, given the extensive “buy-in” required to restructure a school, it will not always be
possible to use cluster random assignment in this context.

8Shadish (in preparation) provides a comprehensive review of the interrupted time-series literature. Campbell
and Stanley (1966) and Cook and Campbell (1979) are perhaps the most widely cited sources on the topic.

9My thanks to Bob Granger of MDRC for raising these issues.
10See Ham and Rock (1999).
11These data represent “moving cross-sections” for different third-grade cohorts each year. Hence, they repre-

sent different students in different years (with the exception of those who are held back and consequently retested).
12The parameters in Equation 1 are identical to their counterparts in Figure 1 when the number of students per

year is constant. If the number of students varies over time, an appropriately weighted analysis of the annual means
in Figure 1 will reproduce the parameter estimates for Equation 1.

13Selection bias exists if the program did not cause the shift in student mix. However, selection does not create
a problem of bias if the shift in student mix was caused by the program. It does, however, create a problem of in-
terpretation. Without more data and/or further assumptions one cannot distinguish between: (1) the change in test
scores due to the change in student mix caused by the program, or (2) the change in test scores due to the change in
individual achievement caused by the program. In both cases, however, the change in test scores was caused by the
program.

14Idiosyncratic events and major changes in student mix should be distributed randomly across schools which
operate independently of each other. Some of these changes will cause student achievement to be above the base-
line trend, and others will cause student achievement to be below the baseline trend. Across a large number of
schools, however, the average deviation from trend should be zero.

15We are basing our evaluation of the Accelerated Schools Project on the experiences of eight to ten schools
from six to seven states that launched their programs between 1990-91 and 1993-94. These schools have consistent
test data for a ten-year analysis period and were judged by staff from the national Accelerated Schools Project to
have reached “mature” acceleration.

16For the Accelerated Schools evaluation, which involved eight to ten school districts in six to seven states, we
found it very difficult to obtain comparison school data. We thus are using a multiple program school design with-
out comparison schools.

17Ham and Rock (1999) describe the integrated quantitative and qualitative approach being used to evaluate
Accelerated Schools.

18Bloom (1995) illustrates how the minimum detectable effect of an estimator is a simple multiple of its stan-
dard error. This multiple depends on three factors: (1) the desired level of statistical significance, (2) the desired
level of statistical power, and (3) whether a one-tail or two-tail test is being used.

19Effect size measures are especially popular for meta-analyses which pool impact estimates across different
outcomes and metrics. For example, see Hedges and Olkin (1985) or Rosenthal (1991).

20For example, the mean value of five baseline years (-5 through -1) is -3.
21For example, the sum of squared variation for five baseline years (-5 through -1) is 10.
22The finding that precision declines as one forecasts further beyond the data used to estimate a model is well

known in econometrics (e.g., see Pindyck and Rubinfeld, 1998, pp. 204-209).
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23Throughout this paper I assume that the same test is used over time for a given school, although different
versions of the same test may be used. This constraint is imposed on the design to avoid shifts in scores that occur
when a new test is implemented. Linn, 1998, pp. 11-12, illustrates how scores fall precipitously when a new test is
implemented and then rebound over time as teachers learn how to prepare students better (i.e., teach to the test).
To evaluate the Accelerated Schools Project, we therefore only selected schools that used the same test for at least
five years before and after launching their program.

24Equation 3 is a “random-effects” model. Such models are used in: (1) the econometrics literature on panel
data (see, for example, Greene, 1997, Chapter 14); (2) the statistics literature on analysis of variance (see, for ex-
ample, Hays, 1973, Chapter 13); (3) the meta-analysis literature on pooling findings across studies (see, for exam-
ple, Raudenbush, 1994), and (4) the literature on “hierarchical linear models” (see, for example, Bryk and
Raudenbush, 1992, Chapter 2).

25See Raudenbush (1997) for a discussion of the statistical issues involved.
26See Murray and Short (1995) Tables 2-8, pp. 685-691.
27See Murray et al. (1994), p. 1042.
28See Hannan et al. (1994), abstract, p. 88.
29My thanks to Michelle Moser and Steve Caso for making these data available.
30This represents a special case of aggregation where the value of each independent variable (the year indica-

tor, ti, and the dummy variables for each follow-up year, F0i, F1i, F2i, F3I, and F4i ) is the same for all members of the
same aggregate unit (a cohort of students for a given year). Kmenta (1971), pp. 322-325, demonstrates that when
this condition is met, the point estimates from an aggregate regression are identical to those from the model for
individuals.

31To simplify the discussion, Equation A1 includes all baseline years but only one follow-up year. Equation 2
in the paper generalizes the model to include all follow-up years.

32Thus, the ith student in year one is different from the ith student in year two, and so on.
33Equation B6 thus represents the minimum detectable effect size for a one-tail hypothesis test at the 0.05 sig-

nificance level with 80 percent power.
34See SAS Institute Inc. (1989).
35This assumes that random variation in tests scores for program schools and comparison schools are inde-

pendent of each other.
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i1See, for example, Levy (1998), Blank (1997), and Burtless (1990).
ii2Murphy (1993) provides a brief review of these programs.
iii3See, for example, Levin (1993).
iv4See, for example, Prestine (1993).
v5See, for example, Barnett (1996).
vi6See, for example, Slavin et al. (1993).
vii7It might be possible to randomly assign students from a pool of volunteers to a “program school” that has
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restructured (see Cave and Kagehiro, 1995). However, this is only possible under special circumstances. In addi-
tion, for some initiatives — such as a new curriculum component — it might be possible to randomly assign whole
schools to a program or a control group. Raudenbush (1997) provides a theoretical discussion of the statistical
properties of this “cluster random assignment” approach; and Bloom, Bos, and Lee (1998) provide an empirical
analysis of these properties. In addition, Cook et al. (forthcoming) used the approach to evaluate Comer’s Student
Development Program in Prince George’s County Maryland, and Cook et al. (1999) used it to evaluate Comer’s
program in Chicago. However, given the extensive “buy-in” required to restructure a school, it will not always be
possible to use cluster random assignment in this context.

viii8Shadish (in preparation) provides a comprehensive review of the interrupted time-series literature. Camp-
bell and Stanley (1966) and Cook and Campbell (1979) are perhaps the most widely cited sources on the topic.

ix9My thanks to Bob Granger of MDRC for raising these issues.
x10See Ham and Rock (1999).
xi11These data represent “moving cross-sections” for different third-grade cohorts each year. Hence, they repre-

sent different students in different years (with the exception of those who are held back and consequently retested).
xii12The parameters in Equation 1 are identical to their counterparts in Figure 1 when the number of students

per year is constant. If the number of students varies over time, an appropriately weighted analysis of the annual
means in Figure 1 will reproduce the parameter estimates for Equation 1.

xiii13Selection bias exists if the program did not cause the shift in student mix. However, selection does not cre-
ate a problem of bias if the shift in student mix was caused by the program. It does, however, create a problem of
interpretation. Without more data and/or further assumptions one cannot distinguish between: (1) the change in
test scores due to the change in student mix caused by the program, or (2) the change in test scores due to the
change in individual achievement caused by the program. In both cases, however, the change in test scores was
caused by the program.

xiv14Idiosyncratic events and major changes in student mix should be distributed randomly across schools
which operate independently of each other. Some of these changes will cause student achievement to be above the
baseline trend, and others will cause student achievement to be below the baseline trend. Across a large number of
schools, however, the average deviation from trend should be zero.

xv15We are basing our evaluation of the Accelerated Schools Project on the experiences of eight to ten schools
from six to seven states that launched their programs between 1990-91 and 1993-94. These schools have consistent
test data for a ten-year analysis period and were judged by staff from the national Accelerated Schools Project to
have reached “mature” acceleration.

xvi16For the Accelerated Schools evaluation, which involved eight to ten school districts in six to seven states,
we found it very difficult to obtain comparison school data. We thus are using a multiple program school design
without comparison schools.

xvii17Ham and Rock (1999) describe the integrated quantitative and qualitative approach being used to evaluate
Accelerated Schools.

xviii18Bloom (1995) illustrates how the minimum detectable effect of an estimator is a simple multiple of its
standard error. This multiple depends on three factors: (1) the desired level of statistical significance, (2) the de-
sired level of statistical power, and (3) whether a one-tail or two-tail test is being used.

xix19Effect size measures are especially popular for meta-analyses which pool impact estimates across different
outcomes and metrics. For example, see Hedges and Olkin (1985) or Rosenthal (1991).

xx20For example, the mean value of five baseline years (-5 through -1) is -3.
xxi21For example, the sum of squared variation for five baseline years (-5 through -1) is 10.
xxii22The finding that precision declines as one forecasts further beyond the data used to estimate a model is

well known in econometrics (e.g., see Pindyck and Rubinfeld, 1998, pp. 204-209).
xxiii23Throughout this paper I assume that the same test is used over time for a given school, although different

versions of the same test may be used. This constraint is imposed on the design to avoid shifts in scores that occur
when a new test is implemented. Linn, 1998, pp. 11-12, illustrates how scores fall precipitously when a new test is
implemented and then rebound over time as teachers learn how to prepare students better (i.e., teach to the test).
To evaluate the Accelerated Schools Project, we therefore only selected schools that used the same test for at least
five years before and after launching their program.

xxiv24Equation 3 is a “random-effects” model. Such models are used in: (1) the econometrics literature on panel
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data (see, for example, Greene, 1997, Chapter 14); (2) the statistics literature on analysis of variance (see, for ex-
ample, Hays, 1973, Chapter 13); (3) the meta-analysis literature on pooling findings across studies (see, for exam-
ple, Raudenbush, 1994), and (4) the literature on “hierarchical linear models” (see, for example, Bryk and
Raudenbush, 1992, Chapter 2).

xxv25See Raudenbush (1997) for a discussion of the statistical issues involved.
xxvi26See Murray and Short (1995) Tables 2-8, pp. 685-691.
xxvii27See Murray et al. (1994), p. 1042.
xxviii28See Hannan et al. (1994), abstract, p. 88.
xxix29My thanks to Michelle Moser and Steve Caso for making these data available.
xxx30This represents a special case of aggregation where the value of each independent variable (the year indi-

cator, ti, and the dummy variables for each follow-up year, F0i, F1i, F2i, F3I, and F4i ) is the same for all members of
the same aggregate unit (a cohort of students for a given year). Kmenta (1971), pp. 322-325, demonstrates that
when this condition is met, the point estimates from an aggregate regression are identical to those from the model
for individuals.

xxxi31To simplify the discussion, Equation A1 includes all baseline years but only one follow-up year. Equation
2 in the paper generalizes the model to include all follow-up years.

xxxii32Thus, the ith student in year one is different from the ith student in year two, and so on.
xxxiii33Equation B6 thus represents the minimum detectable effect size for a one-tail hypothesis test at the 0.05

significance level with 80 percent power.
xxxiv34See SAS Institute Inc. (1989).
xxxv35This assumes that random variation in tests scores for program schools and comparison schools are inde-

pendent of each other.


