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Abstract

We are sometimes forced to use the Interrupted Time Series (ITS) design as an
identification strategy for potential policy change, such as when we only have a sin-
gle treated unit and no comparable controls. For example, with recent county- and
state-wide criminal justice reform efforts, where judicial bodies have changed bail
setting practices for everyone in their jurisdiction in order to reduce rates of pre-
trial detention while maintaining court order and public safety, we have no natural
comparison group other than the past. In these contexts, it is imperative to model
pre-policy trends with a light touch, allowing for structures such as autoregressive
departures from any pre-existing trend, in order to accurately and realistically as-
sess the statistical uncertainty of our projections (beyond the stringent assumptions
necessary for the subsequent causal inferences). To tackle this problem we pro-
vide a methodological approach rooted in commonly understood and used modeling
approaches that better captures uncertainty. We quantify uncertainty with simu-
lation, generating a distribution of plausible counterfactual trajectories to compare
to the observed; this approach naturally allows for incorporating seasonality and
other time varying covariates, and provides confidence intervals along with point
estimates for the potential impacts of policy change. We find simulation provides a
natural framework to capture and show uncertainty in the ITS designs. It also allows
for easy extensions such as nonparametric smoothing in order to handle multiple
post-policy time points or more structural models to account for seasonality.

Keywords: Neyman-Rubin causal model, single unit case study analysis, ITS designs,
criminal justice reform, pre-trial risk assessment, posterior predictive checks
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1 Introduction

Interrupted Time Series (ITS) can occur when a governance body of some area, e.g. a
county, implements a policy change at a particular point in time. The researcher is able
to observe regular measures of some outcome of interest both for several time points
before such a change as well as after. The research question is then whether there is any
evidence that the policy has changed the course of the unit of interest. For example, if
a school undergoes a massive reorganization we would expect that measures of student
wellbeing, such as rate of college-going or rate of graduation, might change over time,
and change differently than they would have absent the reorganization. We might not,
however, expect any treatment impact right at the time of the policy change as it may
take time for the policy to become fully implemented, and for the consequences of the
policy to be felt, making Regression Discontinuity Designs particularly inappropriate.
What makes these contexts particularly challenging is frequently there is only a single
unit that received the policy change and/or no reasonable comparison units that did not
receive such a change.

One area where we see these kind of reform efforts are in modern criminal justice re-
form, in particular pretrial reform. Currently, in the U.S., hundreds of thousands of people
are incarcerated in local jails on any given day as they await resolution of their criminal
case. These people have not been convicted, but are nonetheless incarcerated because,
generally, they cannot afford to post monetary bail to secure their release (Zeng, 2018).
Several jurisdictions have sought to improve these judicial systems by attempting to build
procedures to increase the rate of release for “low-risk” defendants. One general category
of such reforms use risk assessment tools in early court proceedings, providing judges
with information about the risk of a defendant as measured by various characteristics
such as previous criminal history in order to improve judicial decision-making regarding
what types of supervision or restrictions should be placed on defendants awaiting their
case resolution.

This is the context we use in this work. We use data from two such reform efforts, one
in Mecklenberg County, NC (Redcross et al., 2019), and one in the state of New Jersey
(Golub et al., 2019). There are several primary outcomes of interest, of which we examine
two: the proportion of arrestees assigned monetary bail, and the total number of warrant
arrests made.

Perhaps the most used analytic approach for ITS is to fit a simple linear regression to
the data, regressing the outcome of interest onto time and a series of dummy variables
for each time point post-policy. The estimates of these dummy variables then provide
impact estimates for each post-policy point. Unfortunately, even if the underlying linear
trend were fundamentally sound, the deviations from trend are likely correlated and this
correlation needs to be taken into account. Not doing so correctly will undermine any
estimates of uncertainty by giving overly precise (too small) standard errors.

We propose to account for local dependencies by fitting an autoregressive model with
linear trend to the pre-policy data, and then using that model to simulate, using a pseudo-
Bayesian approach discussed in Gelman and Hill (2006), a distribution of plausible post-
policy trajectories that we would expect if pre-policy trends continued unabated. By
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comparing this distribution to the observed post-policy trend, we can estimate impacts
and test for the significance of impacts, given the set of rather stringent assumptions
necessary for an ITS analysis. We can also calculate confidence intervals to assess ranges
of impact. This simulation procedure takes into account the uncertainty of the linear
model estimate, uncertainty in the measurement of the outcomes, and any autoregressive
dependencies in the residuals. Simulation allows us to easily summarize and visualize
heterogeneous impacts post-policy, and in general is an approach that can enrich classic
inference King et al. (2000).

Simulation also allows for several natural extensions. First, we can easily incorporate
covariates to capture nonlinearities (in particular, seasonal trends). Second, we can aver-
age, or smooth, multiple months of potentially heterogeneous impacts typically found in
such evaluations to better capture post-policy impacts in interpretable ways. This allows
testing whether a group of post-policy time points differs statistically significantly from
what would have occurred in the absence of an intervention. We provide an R pack-
age, simITS1, that implements the methods discussed along with all routines needed to
conduct a full and transparent ITS analysis.

The idea for simulation for assessing uncertainty in these contexts is not new; see, for
example, Zhang et al. (2009), who use a parametric bootstrapping approach to assess un-
certainty. Our method is also a parametric simulation approach, but we explicitly include
autoregressive dependencies and explicitly simulate post-policy trajectories. We also dis-
cuss the estimands of interest more explicitly. Similarly, Brodersen et al. (2015) propose a
more complex, fully Bayesian time-series approach, implemented with the causalImpact

package, that relies on modeling a latent state space.
More broadly, ITS is a generally worse (in terms of strength of evidence) version of

Comparative Interrupted Time Series (CITS) analyses, where the target treatment series
has comparison units that are not treated. For an overview of CITS, consider Somers
et al. (2013) or Hallberg et al. (2018). Also see Jacob et al. (2016), who evaluate the
CITS by comparing its findings to those utilizing the more widely-accepted Regression
Discontinuity Design. For a detailed case study with CITS in the context of experimental
trials, see Bloom et al. (2005); this approach has ties to ITS as they fit regressions to the
sequence of paired differences.

ITS is also, of course, based on the idea of a time series. Classic time series methodol-
ogy, e.g., ARIMA models, could account for linear trend by differencing the observations
and then modeling the resulting differences as, ideally, a stationary time series. As this
approach gets further away from the classic linear modeling approaches more familiar with
policy evaluators, we instead follow the linear modeling approaches found in the ITS and
CITS literature. For this alternative direction, however, see, e.g., Stoffer and Shumway
(2006)

In this paper we first lay out the ITS problem and its classic treatment. We then, in
Section 3, describe the simulation procedure that allows for a simple autoregressive struc-
ture, illustrating with an example taken from the Mecklenberg County evaluation. We
then provide our two primary extensions mentioned above—seasonality and smoothing—
in Sections 4 and 5. We offer some general cautions and concluding remarks at the end.

1See most recent version at https://github.com/lmiratrix/simITS/
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Our supplementary offers some further commentary and some extensions. In particular,
we give further justification of the modeling choices we suggest, discuss how to adjust for
time varying covariates, and finally gives a brief overview of the accompanying publicly
available R package that implements everything discussed. We do not focus on the causal
inference reasoning behind ITS: our work focuses on assessing whether there was change;
the question as to why requires additional work, and for that we refer the reader to sources
such as Cook et al. (2002). Causal interpretation of an ITS finding can be fragile in some
contexts; see, e.g., Baicker and Svoronos (2019).

2 Notation and Setup

We have a single treated unit. We observe this unit at several time points before treatment
(e.g. a policy change) as well as for several time points after. For example, consider
Figure 1, showing two time series: the proportion of all arrests in Mecklenberg for each
month for a period before and after a reform effort (Redcross et al., 2019), and the total
number of warrant arrests each month before and after a major reform effort in New
Jersey (Golub et al., 2019).

Based on the trend of the unit before the policy change, we will extrapolate to de-
termine what we would see post policy had business continued as usual. For example,
if we have observed a steady but slow increase in our outcome, we would project that
steady but slow increase into the post policy period. If what we actually observe deviates
from that projected trend, we know that something has changed our system to cause this
departure. The core assumption behind an Interrupted Time Series design is stability;
everything rests on the assumption that, absent any impact, our unit would evolve as it
has been.

We borrow from the potential outcomes viewpoint (for overview, see Imbens and Rubin
(2015) or Rosenbaum (2009)) to make the above more precise. We have a single unit,
and we can either treat it (invoke policy change) at time t0, or not treat it at all. Let
Yt(0), t = tmin, . . . , tmax, be the sequence of outcomes we would observe if we did not ever
treat our unit.2 Let the corresponding Yt(1) be the outcomes we would observe if we did
treat the unit at t0. We could allow Yt(1) 6= Yt(0) for t ≤ t0 if we allowed anticipatory
effects of treatment, i.e., if the unit knows it will be treated it may change before the time
of treatment. In this work, we make the further assumption, however, that there is no
anticipation of treatment, i.e., that Yt(1) = Yt(0) for all t ≤ t0. In some cases, to achieve
this assumption, one can move the point of treatment onset earlier, e.g., to when a policy
was initially being planned rather than its official adoption date.

The impact of policy at a specified time t is then ∆t ≡ Yt(1) − Yt(0). Our observed
data consist of a single treated unit, so the Yt(1) are observed for all t > t0. If we had the
ability to estimate Yt(0) we could immediately estimate ∆t. This converts our estimation
problem to a missing data problem (Rubin, 2005). Within this framework, uncertainty
around the difference is entirely dependent on uncertainty in our estimation of Yt(0).

2Note the subscript here does not denote the unit, as is typically seen, but rather the time of obser-
vation for our single unit.
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(a) Monthly proportion of all arrests that as-
signed bail (or detention) in Mecklenberg.
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(b) Monthly number of warrant arrests made
in New Jersey.

Figure 1: Two example Interrupted Time Series.
The dark grey indicates the post-policy era. t0 = 0 in these figures, with pre-policy time

being non-positive. Right side shows evident seasonality. Left side suggests some
auto-correlation which may be due to seasonality or other unknown factors.

ITS analysis estimates the Yt(0) by fitting a trend (i.e., model) to the pre-policy data
and extrapolating to post-policy timepoints. We next discuss how this estimation is
typically conducted, and identify some problems with it. We then offer an augmented
modeling approach with corresponding inference procedures.

Remark. We analyze at the group level by aggregating individual data within each
month. We might imagine instead analyzing at the individual level, but this will bring in
further complexity from, e.g., individuals being in multiple months (e.g., from multiple
arrests in our context), and unknown correlation structure of individuals within a given
month; aggregation avoids this. Furthermore, migration of individuals into and out of the
policy region could further exacerbate the difficulties with individual trend approaches.
The aggregation avoids these problems by focusing on the “health” of the policy unit
rather than the impact on individuals. Results are then regarding changes at the larger
unit level, which can impact interpretation. That being said, without strong individual
level predictors, aggregation will surprisingly not have a high cost in power; the variation
in the month-to-month averages is a reflection of individual variation (as well as shared
month shocks) and so the fewer data points is coupled with less residual noise for those
points. See Angrist and Pischke (2008), Chapter 3, for a more detailed discussion of this
general rule. For further discussion on aggregation see Bloom et al. (2005), Appendix
D. For some dangers with aggregation if the number of units being aggregated changes
significantly, see Ferman and Pinto (2019).
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2.1 Classic ITS analysis

In a classic ITS analysis one would fit the simple linear regression model of

Yt = β0 + β1t+
tmax∑
k=t0+1

∆k1
¯{t=k}

+ εt (2.1)

with εt
iid∼ N(0, σ2) and the 1

¯{t=k}
0/1 indicators of whether t = k for each post-policy time

point k. This model will perfectly fit all post-policy months, meaning the estimates of β0
and β1 will only depend on pre-policy months. The ∆̂k are then the specific impact esti-
mates for each month k, capturing the departure of Yt from the projected β̂0 + β̂1t. Under
a homoskedasticity assumption, we can obtain standard errors and conduct inference for
the estimated ∆k, because we assume the variation post-policy is the same as pre-policy.
These standard errors will be driven by, and be no smaller than, σ̂, the estimated residual
standard deviation (see Appendix A for derivation).

Nearly equivalent to the above, one can simply fit the model to the pre-policy data
only, dropping the post-policy dummy variables:

Yt(0) = β0 + β1t+ εt. (2.2)

We then, for any point t > t0 in the post-policy era, predict via extrapolation,

Ŷt(0) = β̂0 + β̂1t,

which results in an impact estimate at month t of

∆̂t = Y obs
t − Ŷt(0).

These point estimates will be identical to the ∆̂t from Model 2.1. However, Model 2.2
makes the connection to the potential outcomes framework most clear: our model predicts,
via extrapolation, Yt(0) for all t > t0. We fit our model to pre-policy data, data unaffected
by the policy (by assumption), and then use our fitted model to impute (predict) the
missing Yt(0) for t > t0.

3

These models produce valid inference under the modeling assumptions, in particular
the strong assumption of the linear trend continuing into the post-policy period. As
a model check, the linear trend can be assessed in the pre-policy period; if there are
strong deviations pre-policy, then extrapolation should be done with skepticism. The
causal interpretation, however, relies on any found deviation being only explainable by

3By contrast, instead of not using post policy data at all in the fitting process, some will instead put
a structure on the post-policy impact as well, such as with

Yt = β0 + β1t+ δ01
¯{t>t0} + δ11

¯{t>t0}(t− t0 − 1) + εt,

with 1
¯{t>t0} being a 0/1 indicator of t being after t0, the end of the pre-policy era. Now the parameters

δ0 and δ1 form a model of effects for the impact (in this case the impact begins at size δ0 and grows by
δ1 each month, and ∆t = δ0 + δ1(t − t0 − 1) for t > t0. This allows the post-policy data to inform the
estimated residual variance.
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the policy change; it is a substantive question whether there were other factors or changes
that happened concurrently or after the policy reform, producing changes in outcomes
that should not be ascribed to the policy.

One concern with these approaches is that there may be effects that operate in windows
of time causing adjacent months to have similar outcomes beyond the underlying model.
For example, the pattern of month-to-month averages in Mecklenberg (see Figure 1a)
could contain local correlations of months around what is a generally linear trend (we
discuss the case of cyclic seasonal trends such as shown in Figure 1b in Section 4 below).

If we do not model temporal dependence, we are assuming that, other than the under-
lying linear trend, there is no dependence between months beyond the explicit model. For
example, if month t were surprisingly high, this would not imply any other month, such
as month t + 1, would have any particular value. To produce more principled inference
we therefore extend Model 2.2 to allow for neighboring residuals to be correlated. This
better captures how the time series can “wander” from the linear trend.

A simple approach is to model local dependence using an “AR1” model that uses the
residual in the prior time period as a predictor of the residual of the next. For example,
we can specify the residual of Model 2.2 to be

εt = ρεt−1 + ωt with ωt
iid∼ N(0, σ2). (2.3)

The parameter ρ governs how much autocorrelation we have. If ρ = 0 the residuals are
in fact independent. Higher values of ρ means deviations from trend tend to be similar,
month-to-month. A ρ > 1 would mean a successive observation would be some percent
larger than the last, in expectation, and thus the series would exponentially move away
from the trend line; we therefore require ρ < 1.

An easy way of fitting such a model is to fit the lagged outcome model of

Yt = β̃0 + β̃1t+ β̃2Yt−1 + ε̃t with ε̃t
iid∼ N(0, σ̃2) (2.4)

to the pre-policy time points t = 2, . . . , t0. The initial month has to be dropped as it
has no lagged month. Up to how the parameters are interpreted, this model is equivalent
to the lagged residual model. In particular, as the derivations in Appendix A show, we
have ρ = β̃2, β1 = β̃1/(1 − β̃2) and β0 = β̃0/(1 − ρ) − β̃1ρ/(1 − ρ)2. The residuals in the
lagged outcome model are, under our residual autoregressive model, again independent,
corresponding to the ωt from Model 2.3. See Appendix A for additional discussion.

Once this model is fit, we use it to extrapolate a reasonable counterfactual prediction
of YT (0) for any timepoint T > t0 of interest. In the next section, we discuss how to do
this with simulation.

3 Extrapolating pre-policy trends via simulation

Impacts are estimated by extrapolating the pre-policy model to a post-policy timepoint,
T > t0, of interest. It not obvious how to use the model to form counterfactual predic-
tions when using autoregressive structure. In particular, for T > t0 + 1, if the treatment
has impacted point T − 1, we cannot use the observed YT−1 as our lagged covariate for
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our prediction because YT−1 is not an observed Yt(0), but rather a Yt(1); any treatment
impact in our lagged covariate will contaminate our imputation of YT (0). Second, assess-
ing uncertainty for a point T dependent on prior points is, mathematically, not entirely
transparent. We therefore assess uncertainty and form predictions via simulation.4 In
the next subsection, we first consider the case where we are willing to assume the lagged
model is correct and we knew with certainty the parameters β̃0, β̃1, β̃2, and σ̃2 of our
lagged model. This case is not quite valid since we do not know these parameter values
and so our uncertainty is not fully captured; we include it for clarity of exposition. We
then, in the following subsection, extend to our actual proposed method that incorporates
the additional uncertainty of these parameters.

3.1 Extrapolating with known parameters

We initially assume the model of Equation 2.4 and that our parameters θ = (β̃0, β̃1, β̃2, σ̃
2)

of the pre-policy model are known. We also have observed Yt0 , the last point in the pre-
policy era.

Using this, we can simulate Yt0+1 by drawing a new ε∗t0+1 ∼ N(0, σ̃2) and calculating

Y ∗t0+1 = β̃0 + β̃1(t0 + 1) + β̃2Yt0 + ε∗t0+1.

This simulated outcome is a plausible post-policy outcome, given our model. We can
then simulate an outcome for t0 + 2 using Y ∗t0+1, drawing a new ε∗t0+2 and adding up the
components just as for t0 + 1. Our second simulated outcome depends on our first. If
our first is elevated due to a positive residual, our second will also be elevated. We then
simulated our third, using the second, and continue in this manner until we reach T , and
are left with a prediction for YT . By this point we have generated an entire sequence
of plausible outcomes, given our model. Furthermore, this simulation process has fully
captured the autoregressive structure.

Our final prediction YT is a noisy prediction: it could be high or low depending on
the residual draws. This noise is the key to capturing uncertainty. Both to get a more
precise prediction and also to model the prediction uncertainty, we repeat the simulation
process many times, for each iteration beginning at t0 and Yt0 and simulating a new time
series. We then calculate the average of these series to get our final prediction:

ŶT (0) =
1

R

R∑
r=1

Y
∗(r)
T ,

where R is the total number of simulated series and r indexes these simulated series.
For inference, the middle 95% of our simulated Y

∗(r)
T forms a 95% prediction interval

of what we would expect to see, had the pre-policy trend continued. If what we actually
see, Y obs

T = YT (1), lies outside of this interval, we have evidence our model does not
extrapolate to time T , suggesting that something happened to change our model. This

4One could instead use maximum likelihood and asymptotic approximations given the defined residual
structure; we argue the parametric simulation approach we use provides a flexible and easily extendible
alternative.
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would be evidence of an impact of either the policy change or some other event within
the system.

We can subtract the prediction interval from the observed YT to obtain a prediction in-
terval for the deviation from the predicted trend (this is the quantity that could potentially
be viewed as an impact). This prediction interval correctly captures the month-to-month
variability of the observed trend; see Appendix A.

The major caveat to this process is we do not know the true θ; we instead have an
estimate θ̂. If we simply plug in θ̂ our inference will be overly optimistic as we have not
taken uncertainty in the estimation of the parameters themselves into account; we do that
next.

3.2 Incorporating uncertainty in the parameters

To capture parameter uncertainty we use a method rooted in Bayesian thinking and taken
from Gelman and Hill (2006). It also has ties to the parametric bootstrap (see, e.g. Davi-
son, 1997). The idea is this: instead of using θ̂, draw a random vector of parameters θ∗ for
our model given our observed pre-policy data. This randomly drawn vector of parameters
is itself a plausibly true value, just as we were drawing plausibly true values for the Yt,
above. We then simulate a sequence of Y ∗t using the simulation process described above
but with the θ∗ (and still starting at Yt0) to get a plausibly true prediction conditional on
the parameters. This two-step process captures the uncertainty in model estimation as
well as uncertainty in extrapolation due to the autoregressive structure and residual error.
The distribution of the Y ∗T over repeated iterations gives an overall predictive distribution
that is integrated over both these components.

To get our distribution of plausible θ∗, we use the (estimated) standard errors from the
original model fitting process. In particular, we draw a random β∗ = (β∗0 , β

∗
1 , β

∗
2) vector

from a multivariate normal centered at β̂ = (β̂0, β̂1, β̂2) with a variance-covariance matrix
based on the estimated variance-covariance matrix from the linear model fitting procedure
(the σ2∗ term is handled similarly). This is implemented using the sim() function in the
R package arm. The arm package was written specifically for this form of uncertainty
quantification, and is the companion package to Gelman and Hill (2006).

This approach is essentially Bayesian: the parameter draw step is similar to drawing
a plausible value from a posterior distribution on the true θ (the implied prior here is
implicitly a flat prior on the coefficients, roughly meaning that we are not differently
preferring one value of θ over another). Under this view, the simulations constitute a
posterior predictive distribution for YT and the ŶT is the posterior mean predicted outcome
given all the pre-policy data and the model (see Gelman et al. (1996) for a discussion of
posterior predictive distributions). Further, under this view, the final prediction interval
can be interpreted as a posterior predictive interval for YT (0). Imputing missing potential
outcomes in this way follows the approaches discussed in, e.g., Rubin (2005). Regardless,
the core feature of this approach is that we end up with a range of plausible values for
YT (0) that incorporate the natural variation in the data as well as uncertainty about the
parameters of our model.
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The validity of the range of plausible values depends on the model being correctly
specified. We believe this approach to uncertainty quantification renders model depen-
dency more transparent (salient) than a classic maximum likelihood analysis or regression
approaches. For example, we here see more explicitly the importance of the correct specifi-
cation of the initial linear trend and the homoskedasticity assumption. We are not making
more or different assumptions than the classic approaches with autoregressive specifica-
tions, but rather are making the identical assumptions more explicit. We do avoid some
of the asymptotic approximations used in maximum likelihood inference.

3.3 Case Study: Mecklenberg County and the proportion of
cases assigned bail

Mecklenberg instituted a series of reforms including changing their pre-trial risk assess-
ment tool to a tool called the Public Safety Assessment (the PSA). These reforms were
designed to reduce the negative impacts on arrestees while maintaining public safety; the
goal is to identify and release those defendants unlikely to not appear at future court
hearings or break further laws while awaiting trial, while imposing monitoring on the
remainder. One outcome of interest in evaluating the effectiveness of this program is the
rate of bail setting (what proportion of cases resulted in the assignment of bail or out-
right detention) as compared to outright release. See Redcross et al. (2019) for further
discussion.

To investigate this we fit Equation 2.4 to the Mecklenberg data displayed on Figure 1a.
Our estimated coefficients are β̂0 = 45, β̂1 = −0.12, and β̂2 = 0.26. The lagged outcome
term (β̂2) is not significantly different from 0. We see that the pre-policy trend does
appear roughly linear. The lack of significance of our autoregression term suggests that
there is little autocorrelation after the linear trend is accounted for, but keeping it in
our simulation incorporates the additional uncertainty that even a small amount could
bring. Dropping the lagged term from our model would be imposing the assumption of
independence, which, given substantive knowledge of seasonality effects on criminal and
policing behavior, is not tenable. The failure to find a significant correlation could be a
power issue.

Using our model we can generate trajectories starting at t0 = 0, Y0 = 60.1. Ten such
extrapolations are on Figure 2a. We generate 10,000 such extrapolations based on 10,000
draws of possible parameters θ, and summarize by, for each time point, taking the middle
95% range of values. We plot these as an envelope on Figure 2b.

Overall we see evidence of a reduction of the use of bail. Pre-policy trends do not
tend to fall as far as what actually occurred. We also see that the observed outcomes for
the first four months after the policy change are still potentially following the pre-policy
trend; the departure is only really significant at month 5 and 6. At this point, actual
bail mostly levels off at the reduced rate of around 50%. Patterns such as these raise
important issues of how to ascribe the change: was this drop at month 5 due to the policy
shift, or due to some subsequent intervention that may or may not have been part of the
policy? In this case, there is some qualitative evidence that Mecklenberg continued to
reinforce their policy change with additional trainings of court agents, which could have
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(a) Ten extrapolated series.
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(b) Envelope from 10,000 simulations.

Figure 2: Results of Mecklenberg analysis.
At left ten sample simulated series along with observed data. At right the overall

envelope of plausible series given pre-policy data. We see that for many post-policy
months the proportion of cases assigned bail is not in the range of likely bail rates,

suggesting that there was a more rapid decline of bail-setting after the policy change
than expected given the slow decline of the pre-policy trend.

caused this delayed impact.
The nominal impact is the difference of the projected trend and the actual, which

means the change in the overall level of an outcome does not necessarily mean there is
a measured impact. In this case, for example, we see the overall linear pre-policy trend
projecting a steadily decline of bail assignment. This means that at around 2 years post
policy we cannot rule out an absence of impact: those bail levels may have been reached
regardless, considering the pre-policy declining trend, but at a later time than with the
policy change.

But then again, the further out an extrapolation the greater our dependance on the
model being correctly specified, both statistically and as a representation of a dynamic
and complex system. The statistical model can extrapolate assuming the general model fit
to pre-policy, but the assumption that these trends would continue indefinitely becomes
substantively less plausible the further away from the transition we go. The greater
uncertainty in later months is only due to estimation error, and is dependent on the
assumption that the pre-policy process would have continued unabated in the absence of
the policy change. In particular, we cannot know if alternate measures would have been
taken had the policy not been imposed or if the system would have naturally reached
some change point given the dynamics.

Overall, there are three sources of uncertainty to attend to in such analyses, with only
the first two quantifiable: (1) parameter estimation error for the model, (2) the natural
variation due to month-to-month changes and associated auto-regression, and (3) model
specification.
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(b) Four seasonality models for number of war-
rant arrests

Figure 3: Seasonality in the total arrests data in New Jersey.

4 Seasonality effects

In New Jersey, when a person is arrested the arresting officer can (1) serve a summons,
where the officer gives the arrestee a court date for a future appearance and then sends
them home, or (2) serve a warrant, which could result in detention until the resolution
of the case. One consequence of a policy rooted in risk assessment might be to change
policing behavior towards only giving warrants for the more serious offenses. An outcome
of interest that assesses this is the total number of warrant arrests made.

Counts can be more difficult to model than proportions. Figure 1b shows a strong
periodic trend across the years, with reduced number of arrests when it is winter, and
more in summer. In fact, average temperature in a month (a good proxy for season) is
found to predict total arrests quite strongly; see Figure 3a. These seasonal cycles are
likely due to factors such as increased time spent indoors and away from the public eye
during the colder winter months.

Fitting a simple autocorrelation model would miss the cyclic nature of our trend, which
means we have clear model misspecification and which, in this case, results in substantial
loss of power (as we show below). We instead extend our linear model to model the
periodic trend. The autoregressive element would then allow local departures from the
overall seasonality model, just as we had local departures from the linear model above.

There are several ways one might capture a periodic seasonality structure with linear
regression. A simple approach is to include dummy variables for the four seasons. The
following model, for example, has the first quarter as a baseline, has three offsets for the
other three quarters, and also allows an overall linear trend:

Yt = β0 + β1t+ γ2Q2t + γ3Q3t + γ4Q4t + εt,

with Q2t, Q3t, and Q4t 0/1 indicators for being in the 2nd, 3rd, and 4th quarters of the
year. A second approach is to use a covariate that is predictive of outcome and is itself
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periodic, such as, in our case, monthly average temperature in the region:

Yt = β0 + β1t+ β2Tempt + εt,

where Tempt is a measure of average temperature for month t. The periodic nature of our
data is then driven by the periodic nature of our time-varying covariate. These general
approaches can easily be combined:

Yt = β0 + β1t+ β2Tempt + β3Q2t + β4Q3t + β5Q4t + εt. (4.1)

One potential concern with seasonal dummy variables is the resulting curve will be a
step function rather than a smooth curve, with steps at pre-specified points that are not
data driven. We could alternatively fit a sinusoidal trend by building two covariates that
correspond to the sin and cos of the month (rescaled to have a yearly period). Linear
combinations of these two covariates allow for sinusoidal curves that can be smoothly
shifted left or right. For example:

Yt = β0 + β1t+ ρ1sin(2πt/12) + ρ2cos(2πt/12) + εt.

Different coefficient values for ρ1 and ρ2 control where the peaks and valleys of this trend
are.

To illustrate these four fitting approaches, see Figure 3b, which shows simple fits
(without lagged variables) to the pre-policy data. Of the four models, the model with
both quarter and temperature has the best pre-policy fit, with an estimated residual
standard deviation of 192 compared to 250 and above for the other models.

4.1 Seasonality with autoregressive residuals

Once a seasonality model is selected, we again are faced with how to fit the autoregres-
sive residual structure in a simple way that also lends itself to simulation. We cannot
simply include the lagged outcome, as this lagged outcome includes the lagged periodic
structure. We therefore include the lagged values of the covariates used to model season-
ality along with the outcome; this subtracts out the lagged structural component of the
trend, resulting in a corrected model that puts the autoregression solely on the residuals.
See Appendix B for a derivation of this result, along with some alternative estimation
strategies.

For example, for Model 4.1 we would have Xt = (1, t, Qt2, Qt3, Qt4, T empt). We would
then fit the following regression:

Yt = X ′tβ −X ′t−1β` + ρYt−1 + ωt,

with β our primary trend and β` our lagged “anti-trend” (generally β ≈ β`, with an
exact equality if we fully believe our lagged model). There is a small technical caveat:
the lagged covariates can frequently be collinear with the contemporaneous covariates,
thus producing an overall design matrix that is not full rank. For example, if we include
a linear time component by including the covariate Xt,2 = t as one of the columns of
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(b) Projection without seasonality

Figure 4: Prediction envelopes for number of warrant arrests in New Jersey.
Time period (x-axis) truncated to show more detail of model fitting in post-policy era.

(a) shows seasonality model, (b) shows model with no seasonality. See raw data on
Figure 1b.

our design matrix, the design matrix with our lagged covariate of Xt,k = t − 1 will
clearly be fully collinear with Xt,2.

5 This can also happen with periodic covariates such
as Xt,k = sin(at). This colinearity is easily resolved: simply drop collinear columns (in
particular the intercept and time variables), allowing the remaining parameters to estimate
the combined influence of both the primary observation and the structural component of
the lagged outcome.

4.2 Case study: New Jersey and the number of warrant arrests

We next analyze the data on warrant arrests shown on Figure 1b with our seasonality
model. We fit Model 4.1 with the autoregressive residual model of εt = ρεt−1 + ωt. We
set t0 = −8 due to evidence that there was some preparatory restructuring and changes
made in advance of the policy’s official start date to ensure a smooth launch; by setting
t0 = −8 we increase the plausibility of our no anticipation assumption. We, following the
above, extend our model to include the lagged outcome and lagged covariates, giving

Yt = β0 + β1t+ β2Tempt + β3Q2,t + β4Q3,t + β5Q4,t+

β6Tempt−1 + β7Q2,t−1 + β8Q3,t−1 + β9Q4,t−1 + ρYt−1 + ωt.

We then generate the predictive envelope on Figure 4a by following the process described
above.

By comparison, if we had not included a seasonality model and instead simply fit our
simple linear trend model, we get Figure 4b. The model without seasonality has more
autocorrelation (estimated as 0.77 vs. 0.69), because points near each other are correlated

5This colinearity is why the simple lagged linear trend model does not have an extra term beyond the
lagged outcome itself.
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due to the periodic trend around the base linear model, while the seasonality model cap-
tures and removes these dependencies. This autocorrelation allows for large deviations
from trend in the simulated extrapolated series, and thus we see a large confidence enve-
lope. In general, without the seasonality model we are not able to take advantage of the
seasonal structure of the data, but the autoregressive element does capture that there is
local dependence, resulting in a conservative inference.

One might ask whether Mecklenberg should also be fit with a seasonality component.
Generally, to reliably estimate a seasonality structure, we would need several cycles of the
seasons; Mecklenberg is “too short” to ascertain that structure. In this case, we rely on
the estimated autocorrelation to capture the overall uncertainty. Determining when to
fit the more complex model vs. not is an important area for future work, but we found
that with eight years of data, and a clear seasonal trend, the seasonality model was easily
estimable. For Mecklenberg, however, seasonality models were quite unstable.

5 Inference and smoothing

Reading the envelope graphs from the above analyses can be somewhat confusing as
there are multiple post-policy months with some of them having observed outcomes lying
outside of the predictive envelope and others not. In this section, we discuss inference
more formally and discuss how to increase power by averaging the outcomes of post-policy
months together. For this averaging we can either average a fixed range of months, or use
methods akin to a sliding window by nonparametrically smoothing the observed trends to
account for month-to-month variation. This sliding window approach is appealing in that
we can display an entire curve of impacts post-policy, which allows for a more nuanced
interpretation of how a policy may have evolved over time.

5.1 Inference

Consider the null hypothesis of there being no change in the pre-policy trend (and that
we have correct model specification). In this case, our simulated series are all plausible
forecasting series, given the pre-policy data. For any given point T > t0, we can therefore
examine the distribution of simulated values at T to see how much variability we would
see under the null hypothesis.

In this view, we use our observed outcome Y obs
T as the observed value of a test statistic:

we compare this observed value to the simulated values that capture what our model says
is possible. If the observed value is outside the central range of these simulated values
(which we consider our reference distribution), we reject the null that the pre-policy trend
continued unabaited (again assuming the pre-policy model is correct). We could do this
for each T > t0.

While reasonable and sound, there are two concerns: first, we have a multiple testing
issue. If the series is long enough, we are bound to find some points outside their respective
predictive ranges simply due to random fluctuation. Second, we have a power issue. We
are comparing our test statistic, a potentially highly variable single point Y obs

T , to a
distribution of simulated values Y ∗T that all themselves could be quite variable. If the

15



policy caused a modest reduction in Y obs
t for all t > t0, it is possible that no individual

T > t0 would look significantly reduced when examined in isolation.
As a contrast to testing a specific point in time, we might instead test for a systematic

and sustained shift in the outcomes over a range of times post-policy. In order to test a
larger sequence of time points, we need to combine our observed data into some sort of
average and compare that average to the distribution of averages we would have likely
seen under the null.

The simplest approach to do this is to simply average all the outcomes in a pre-specified
range of months post-policy. We then compare this simple average to the distribution of
simple averages calculated from the distribution of plausible trajectories. The key point is
once we have our distribution of plausible trajectories, we can test our null hypothesis by
comparing a summary statistic of our outcome to the distribution of that same summary
statistic calculated on our trajectories. To be specific, take our observed series Y =
(Y1, . . . , YT ) and calculate our summary tobs = t(Y ), where t(·) a function that takes our
data and summarizes it in some way (e.g., by calculating the average of Yt0+1, . . . , YT ).
Next, for each simulated series Y ∗(r), calculate t∗(r) = t(Y ∗(r)), and then calculate the α/2
and 1−α/2 quantiles t(α/2) and t(1−α/2) of these t∗(r). Our prediction interval of what value
of the summary statistic we would expect to see is then CI = (t(α/2), t(1−α/2)). If tobs 6∈ CI,
we reject our null hypothesis. We calculate nominal p-values using the percentile q of our
observed tobs, with p = min(q, 1− q) (for a two-sided test).

Testing in this way is akin to posterior predictive checks of model fit (Rubin, 1984;
Guttman, 1967): we want to know if the model fit to pre-policy data fits our post-policy
observed data. If it does not, we reject the model, i.e., conclude that something changed
our trajectory. Our p-values are called posterior predictive p-values, and do not necessarily
have strictly valid frequentist properties, but they are argued to generally be conservative
(Meng, 1994). Also see Robins et al. (2000).

5.2 Smoothing

In investigating a place-based initiative we generally want to understand the evolution of
the impact over time. For example, with Mecklenberg, it appears as if the policy induced
a large reduction in the rate of bail setting a few months into the post-policy period,
with that level of bail setting generally sustained over time. If we only use the simple
averaging method from above, and did not look at the overall graph of impacts, we would
lose this nuance. But the raw graph is noisy, making trends somewhat difficult to discern.
We therefore might want to smooth the trend in the graph to, as much as possible,
remove month-to-month variation. Smoothing is when one locally summarizes a trend to
remove some variation, ideally without imposing a global structural so local structure is
preserved (Cleveland, 1993). Smoothing is generally nonparametric, and can be done with
splines, averaging within a sliding window, or using loess (Locally Weighted Smoothing)
(Cleveland (1981), but see Cleveland (1993)). Smoothing can make communication with
various stakeholders easier, as it removes random variation that may draw ones attention
if not removed; see, e.g., discussions in Starling et al. (2019).
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(a) Ten extrapolated smoothed series
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(b) 10,000 smoothed simulations

Figure 5: Results of Mecklenberg analysis (with smoothing).
Left shows how smoothed trajectories have less variability than the raw series did. Right
compares smoothed envelope with envelope without smoothing. We see less variability.
The red line denotes the smoothed observed trend to be compared to the envelope and

counterfactual predicted trend.

We can easily use smoothing coupled with our inferential approach above. In partic-
ular, we smooth each simulated time series using a specific (pre-specified) method. We
then compare the distribution of these smoothed time series to the actual time series
smoothed in exactly the same way. Under our null hypothesis, the smoothed observed
trajectory should be exchangeable with any of the smoothed simulated trajectories. Our
smoothed estimate at a given timepoint T is now our test statistic, and the distribution of
smoothed estimates of our simulated series our prediction distribution of what values we
might have expected. This should have greater power: we are now examining the overall
trend in the neighborhood of T , potentially increasing precision as idiosyncratic monthly
variation gets averaged out.

One caveat is that if we smooth across t0 we can cause the smoothed line of our
observed series to artificially deviate pre-policy since the post-policy points will be included
in the local average near the policy change. Similarly, the pre-policy timepoints near t0
can drag the smoothed post-policy timepoints near t0 towards their values, potentially
masking impacts. To avoid this, one can smooth the post-policy series only, not including
any pre-policy points; if this is done, then it needs to be done for both the simulated series
as well as the observed series. The key is to implement the same process on all series,
simulated and observed, to maintain the validity of the comparison.

5.3 Mecklenberg County, continued

We continue our Mecklenberg example by showing how to improve power using both av-
eraging and loess smoothing. We initially average the outcomes for the initial 18 months
after t0. In our data, we observe an average bail rate of 52%. The middle 95% prediction
interval of the averages of our simulated series ranges from 55% to 64%. We therefore
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conclude that something changed the pre-policy trajectory so we are seeing lower average
rates of bail-setting than we would have expected. If we take the difference to get esti-
mated impacts we obtain a 95% confidence interval (technically a credible interval) for
the true average impact being in (−3%,−12%). To get a point estimate for the average
impact, we average the simulated averages, predicting an average bail setting of 59% and
estimated impact of −7 percentage points.

If we look at a tighter range of months (which we would ideally have pre-specified)
of 6 months to 18 months, we observe an average of 49%, a corresponding prediction
interval of 54% to 64%, and an estimated impact of between −5pp and −15pp. Choice of
summary measure can substantially matter here as they will differently weight what are
often quite heterogeneous impacts across time.

We also use loess smoothing to smooth the post-treatment trajectory. We first smooth
our observed series with a loess smoother fit to the post-policy data only to avoid any
influence of pre-policy points on our resulting line. We then fit the same smoother to
each of our simulated series, ignoring the pre-policy points there as well. Results are on
Figure 5. Figure 5a shows 10 smoothed trajectories in the post-policy period. Figure 5b
shows the envelope based on these trajectories, along with the smoothed observed line
and, in the background, the original envelope without smoothing. The smoothed observed
curve is arguably easier to read than the raw data. We also see precision gains from the
smoothing process, which stabilizes the estimation. Also note the wider envelope at far
left; this is due to loess smoothers being more variable at endpoints.

Smoothing does require specifying a tuning parameter of how much to smooth. For
loess, for example, we essentially specify what fraction of the data should be used to
calculate the smoothed outcome at each time point. If we smooth a lot, then local
variation in the structure will be removed, but the lines will be more stable. If we smooth
little, then we do not really average local points, and thus our variance will remain high.
This is a bias-variance tradeoff in the estimation and visualization.

5.4 Smoothing with seasonality.

When the model has a seasonality component causing oscillation, a simple loess smoother
might dampen the oscillations, creating a smoothed series that is more flat than the data.
This not only looks odd, but can be deceptive. But, as discussed above, we can smooth
in any fashion we choose, as long as we smooth our observed data in the same way as the
simulated. This allows for the following multi-step smoothing approach that smooths the
residual variation around the structural component of a seasonality model. For each time
series (observed or simulated) smooth as follows:

1. Fit a working seasonality model to the data. This is not the original seasonality
model, but a new model. There is no need for lagged outcomes or uncertainty
estimation in this model. As before, we can choose to fit to post-policy data only,
all data, or pre-policy data.

2. Predict all the outcomes given our seasonality model.
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(a) Base smoothing model
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(b) Sinusoidal smoothing model

Figure 6: Prediction envelopes for number of warrant arrests using smoothing.
Time period and y-axes truncated to show more detail of model fitting in post-policy

era.

3. Calculate the residuals by subtracting the predicted outcomes from the actual out-
comes.

4. Fit a loess smoother (or some other smoother) to the residuals (again choosing
whether to focus on post-policy only or all data).

5. Add the smoothed residuals back to the predictions to get a final smoothed curve.

This process strips the estimated approximation of the structural component from the
series and sets it aside to prevent it from being smoothed or averaged out. Step (5) puts
it back so our final series still maintains the overall structure. In particular, any estimated
seasonality component will not get smoothed out. The key idea is that our model used
for smoothing does not need to be a correctly specified model; it is purely to set aside
any seasonal structure so it does not get over-smoothed.

5.5 New Jersey, continued

To demonstrate smoothing with a seasonality model we extend our analysis of warrant
arrests. We compare two methods of smoothing, using the same model for extrapolation,
but calculating our residuals using two different models. In one we use the base (non-
lagged) model with quarter and temperature, and in the other we fit the sinusoidal model
without temperature. Our second model intentionally smooths away month-to-month
variability due to fluctuating temperature in both our simulated and observed series, even
though we use the temperature to fit and extrapolate our data to obtain our predictive
series before smoothing. The results are on Figure 6. The left has preserved the month-
to-month variation predicted by the temperature changes, giving a more jagged sequence.
The right, by contrast, is smoother, showing underlying structure more clearly.
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Remark. If we do not fit the same model to the same range of data across all series,
smoothing in the observed series could cause different distortions than in the reference
series. This could create systematic differences even if the null of no treatment impact
were true. However, if there is a large initial treatment impact, a model fit to the full
observed series could be misspecified. This could give an odd smoothed series for the
observed data. Regardless, as long as the model fitting process is held to be the same, then
comparing the observed series to the reference distribution is still valid for testing. We
recommend selecting a smoother that is not overly dependent on the pre-policy patterns,
but instead naturally fits to the observed post-policy data. In particular, we suggest
fitting the seasonality model to the post-policy data only.

6 Conclusion

We have demonstrated a simple modeling (linear regression with lagged outcomes and
covariates) and simulation framework for capturing uncertainty for Interrupted Time Se-
ries designs. These designs often appear when attempting to assess the impact of a policy
change on a single region of interest when there are no good comparison regions available.

Our modeling framework allows for the easy incorporation of seasonality models and
of smoothing in a straightforward manner. It also naturally allows for incorporation
of autoregressive structure to better account for overall uncertainty. Finally, we argue
that this approach naturally lends itself to generating clear visualization of impacts and
transparent reporting of results.

In this work, we have examined ITS designs with many pre-policy timepoints; with
fewer timepoints estimating the autoregressive component of the model will generally
be much more difficult. In maximum likelihood approaches, it is known that this can
cause bias and poor coverage when there are only 5 or so observations (see, e.g., St. Clair
et al. (2016)). We leave whether simulation, simulation which specifically incorporates
the uncertainty in the estimated lagged coefficients, would help in these short ITS designs
to future work.

This approach could also be extended to power calculations. Minimal detectable effect
size (MDES) and power depend on several factors: the number of cases per month, the
month-to-month variability beyond natural variation due to the cases, the number of
months of pre-policy data, and the desired window of predicting impacts after the policy
implementation. Each of these can heavily influence the ability to detect effects. One way
forward is to again turn to simulation. In particular, given specific parameterized values
for the factors listed above, one could repeatedly simulate a dataset, and then analyze
that dataset using the above simulation approach as an inner step. For each initially
simulated dataset we would then record the width of the simulated extrapolations. The
average width of these prediction intervals at each time point could then be tied to MDES.

Finally, the modeling itself could also potentially be extended and enriched to better
capture some data contexts. For example, if the number of individual cases changed
substantially over the course of a series, we might want to let our residual error be a
function of sample size to capture differing levels of precision (see, e.g., Ferman and
Pinto, 2019). One approach would be to regress residual size onto number of cases,
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giving an intercept and slope which would represent core month-to-month variability and
within-month variability, and use this decomposed variation in the autoregressive model.

With ITS, there are some concerns with interpretation, in particular in the case of a
dynamic system. For example, if the impacts in early post-policy months are creating
a feedback loop (e.g., changing patterns in detention causing changes in the patterns
of new charges) then the mix of individual cases constituting the overall region may
be changing as a result of the policy change. This further underscores that interpreting
impacts has to occur at the region level, which naturally takes these changes into account.
In particular, a reduction of bail rates could potentially be due to the policy changing the
cases themselves, rather than be due to changes in how cases are being handled. Ideally
we thus should focus on measures that are of interest when viewed at the aggregate level.

And finally, fundamentally, we note that all that this type of analysis can show us,
using this method or any other, is that the trend has changed in a surprising way. Why
it did so, the statistics cannot answer. The researcher in the end must turn toward
substance matter knowledge and argument to defend the proposition that a found change
was caused by the policy shift.
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Supplementary Material for
“Using Simulation to Analyze

Interrupted Time Series Designs”
This online supplement contains additional discussion and results to complement the

main paper. Appendix A contains a few lemmas and an extended discussion of the
technical details. Appendix B gives further explanation of why we need to include lagged
seasonal covariates, and also discusses some alternative modeling approaches one might
take. Appendix C gives an overview of how we could adjust for time-varying covariates
(e.g., changing mix of cases) in an analysis. Appendix D has a demonstration of the R
package that accompanies this paper.

Appendix A: A few lemmas and extended discussion

We here provide the small lemmas and derivations that complement the text. After we
have a few further remarks about the approach, including some notes as to what to do if
the autoregressive coefficient is estimated to be larger than 1 or less than 0.

Standard errors for classic OLS-based ITS

Lemma 1. Under the classic OLS approach, the standard errors for the ∆̂k, k > t0 are

ŜE
[
∆̂k

]
=
(
1 + S00 + 2kS10 + k2S11

)1/2
σ̂ ≥ 1,

with the S00, S11 and S01 being the elements of the variance-covariance matrix one would
obtain for the coefficients of a simple intercept-slope regression of the outcome on the
prepolicy data only.

Proof: The design matrix X of our regression consists of a column of 1s, a column with
the time values 1, . . . , T , and one column for each post-policy timepoint, where the column
for time point k has all 0s except a single 1 at row k. Given this, X ′X is a (2+K)×(2+K)
block matrix:

X ′X =


T

∑
t t 1 1 · · · 1∑
t t

2 t0 + 1 t0 + 2 · · · t0 +K
1 0 · · · 0
0 1 · · · 0

· · · · · · · ·
· · · 1

 =

[
A B
B′ I

]
,

where K is the number of post-policy timepoints (and the number of our different ∆k we
are estimating). Note the bottom-right block is a K ×K identity matrix. A corresponds

24



to what we would get from the simple linear regression of Y on the months 1, . . . , T with
an intercept.

Classic OLS gives our standard errors for our coefficients as the diagonals of (X ′X)−1σ̂.
We next calculate (X ′X)−1. The inverse (X ′X)−1 will give another symmetric matrix
defined by the block matrix

(X ′X)−1 =

[
(A−BI−1K B′)−1 −A−1B(IK −B′A−1B)−1

(IK −B′A−1B)−1

]
.

The standard errors for our impact estimates are governed by the bottom-right corner of
the above. We can simplify the bottom-right corner by using the Woodbury identity of

(a+ cbc′)−1 = a−1 − a−1c(b−1 + c′a−1c)−1c′a−1

and (−M)−1 = −M−1 to get

(IK −B′A−1B)−1 = I−1K − I
−1
K B′ [−A+B(IK)B′]

−1
BI−1K

= IK −B′ [−A+BB′]
−1
B

= IK +B′ [A−BB′]−1B.
We can then simplify the second term further. Let Xpre be the entries in the first T − k
rows and the first two columns of the design matrix. This is the design matrix of the
simple regression on pre-policy units only. Then we have A − BB′ = X ′preXpre. To see
this note that BB′ has the form

BB′ =

[
k

∑k
j=1 T − k + 1∑k

j=1(T − k + 1)2

]
.

Thus, subtracting BB′ from A simply takes off the last elements of the sums. Therefore
(A − BB′)−1 = (X ′preXpre)

−1 = S, the variance-covariance matrix for the coefficients of
our simple pre-policy regression. This gives

(X ′X)−1 =

[
(X ′preXpre)

−1 −A−1B(IK −B′A−1B)−1

IK +B′(X ′preXpre)
−1B

]
.

Finally, take the rth column of B, which corresponds to the rth post-policy period at
time t0 + r. This column is (1, t0 + r). We then have(

B′(A−BB′)−1B
)
rr

= (B′SB)rr = S00 + 2(t0 + r)S10 + (t0 + r)2S11 ≥ 0. (6.1)

The inequality is because B′SB will have a nonnegative diagonal as v′Sv ≥ 0 for any
vector v due to S being positive semi-definite. Since this bottom right corner of the
variance-covariance matrix is the above plus the identity matrix, we finally have our
result.

�

This lemma shows how our fundamental error is due to the initial 1 in the sum. The
remaining terms, in particular the (t0 + r)2S11 term, correspond to the standard errors in
the intercept and slope estimated on pre-policy data being extrapolated. In particular,
note how as r increases, these terms grow quadratically in the variance and linearly in the
standard error. This is due to uncertainty in the slope causing increasingly large levels of
extrapolated uncertainty.
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Connection of lagged outcome model to residual dependence

Our original goal was to allow for dependencies of the residuals in our linear model, but
we used lagged outcomes instead. These are the same thing, with different interpretation
of the parameters in the model. To see that a lagged model on Y is the same as a model
with lagged dependent residuals, take our simple regression model (Equation 2.2) with its
lagged residual model (Equation 2.3). Then

εt−1 = Yt−1 − β0 − β1(t− 1)

and

Yt = β0 + β1t+ [ρεt−1 + ωt]

= β0 + β1t+ ρ [Yt−1 − β0 − β1(t− 1)] + ωt

= β0 + ρ(β1 − β0) + β1(1− ρ)t+ ρYt−1 + ωt

= β̃0 + β̃1t+ β̃2Yt−1 + ωt.

This shows β̃0 = β0 + ρ(β1 − β0), β̃1 = β1(1 − ρ), and β̃2 = ρ. Fitting our lagged
outcome model will give estimates for (β̃0, β̃1, β̃2). We can then convert them to our target
(β0, β1, ρ); it is simply a different parameterization. Some algebra gives the conversions
to the residual model as

ρ = β̃2

β1 =
1

1− ρ
β̃1

β0 =
1

1− ρ
β̃0 −

ρ

(1− ρ)2
β̃1.

The estimated residual variance is the variance of the ωt.

Properties of the residuals. For our lagged residual model, we have E [εt] = 0 and,
for any given t,

var(εt) = E
[
(εt − 0)2

]
= E

[
ρ2ε2t−1

]
+ 2ρ E [εt−1ωt] + E

[
ω2
t

]
= ρ2σ2

ε + 0 + σ2.

This gives

var(εt) =
1

1− ρ2
σ2.

We also have
cov(εt, εt−1) = E [εtεt−1] = E [(ρεt−1 + ωt)εt−1] = ρσ2

ε

meaning that the residuals have correlation ρ.

26



Prediction intervals capture month-to-month variability. To see why this is the
case, note how our autoregressive series gives a conditional prediction for each time point:
given time T − 1, our prediction for time T is the structural component plus the autore-
gressive part of the residual. Under this view, write the final predicted outcome at time
T as an average of the conditional predictions given time T − 1:

ŶT =
1

R

R∑
r=1

[
β
(r)
0 + β

(r)
1 T + β

(r)
2 Y

∗(r)
T−1

]
.

Even though there is no final ε
(r)
T in the above it is equivalent, up to simulation error, to

the simple average of the simulated Y
∗(r)
T because the average of the ε

∗(r)
T is 0. This shows

that the variation in our predictions combines the variation in the prediction itself with
the additional εT , which is the independent variability. Under this decomposition, the
variation due to the εT is the variation of the observed series, and the remainder is the
variation of the structural trend and autoregressive variation. All of this depends on cor-
rect model specification, in particular, the assumption that our observed post-policy series
has the same month-to-month variation as our pre-policy series (i.e., homoskedasticity).

Handling overly large or small estimates of ρ

Estimation involves uncertainty, and when fitting a lagged variable we have a range of
possible coefficients for ρ that could include values larger than 1 or less than 0. This can
cause difficulties; in particular, if the uncertainty on the coefficients carries the coefficient
for the prior Y to more than 1, those associated projections will compound exponentially
and be nonsensical. This happens when there is little model stability in the fitting of
the model (e.g., with only a few months of pre-policy data, in particular), or if there
are large nonlinearities in the pre-policy. In the latter case, the estimated ρ coefficient
can be estimated as relatively large to compensate for the model misspecification. If the
coefficient is negative, the predictions can oscillate, again in a nonsensical manner. If
either happens only in the extreme draws of the posterior, there is no major concern as
the prediction intervals will trim these extremes. If they are more frequent, the confidence
intervals will give overly wide ranges that signal the model fitting issues.

Appendix B: Why include lagged seasonality covari-

ates

We start with a general structural model with autoregressive residuals of

Yt(0) = fβ(Xt) + εt,

with fβ(Xt) being a model of covariates Xt (where Xt is a vector of potentially time-
varying covariates including t itself) indexed by some parameter vector β. The fβ(Xt) is
the structural aspect of our model and our residuals are then εt = Yt−fβ(Xt). We assume
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that once we remove the structure we have a stationary6 autoregressive process given by
Equation 2.3 on the residuals. To connect to the above, we have heretofore assumed that
fβ(Xt) = β0 + β1t with θ ≡ (β0, β1).

With this more general model, using Equation 2.3 and the consequent εt−1 = Yt−1 −
fβ(Xt−1), we have

Yt = fβ(Xt)− ρεt−1 + ωt

= fβ(Xt) + ρ [Yt−1 − fβ(Xt−1)] + ωt

= fβ(Xt)− ρfβ(Xt−1) + ρYt−1 + ωt. (6.2)

Now consider the case when fβ is a linear model, with fβ(Xt) = X ′tβ. This is the
case presented in the main paper. For example, for Model 4.1 we would have Xt =
(1, t, Qt2, Qt3, Qt4, T empt). Plugging X ′tβ in to the more general Equation 6.2 gives

Yt = X ′tβ − ρX ′t−1β + ρYt−1 + ωt

= X ′tβ −X ′t−1β` + ρYt−1 + ωt,

with β` = −βρ. The second line above shows that, if we do not insist on keeping the
structure of the same β in both the Xt and the Xt−1 terms in the above, we can simply
regress Yt on Xt, Xt−1 and Yt−1, dropping the constraint of β` = −βρ.

We here repeat the technical caveat from the main text: the lagged covariates can
frequently be collinear with the contemporaneous covariates, thus producing an overall
design matrix that is not full rank. For example, if we include a linear time component
by including the covariate Xt,2 = t as one of the columns of our design matrix, the
design matrix with our lagged covariate of Xt,k = t − 1 will clearly be fully collinear
with Xt,2. This colinearity is easily resolved, however: simply drop any collinear columns
(in particular the intercept and time variables), allowing the parameters to estimate the
combined influence of both the primary observation and the structural component of the
lagged outcome due to that variable.

Remark. This model fitting process relaxes some of the structure of the parameters. In
particular, we no longer enforce β` = −βρ. However, given the consistency of estimation
for linear regression, we immediately have that as n increases our Ordinary Least Squares
(OLS) approach will converge on the correct parameterization, giving overall consistency
even if we drop this constraint. Interestingly, as a model check, given the relaxation one
could compare −β̂ρ̂ to β̂`. They should be the same, up to estimation error.

To further examine why we have the lagged covariates in our model, write the above
as

Yt = (Xt − ρXt−1)
′β + ρYt−1 + ωt.

This formulation suggests that our regression is, in effect, regressing our outcome onto the
differences of our covariates (including any linear time term or intercept) with the lagged
covariates scaled by our unknown ρ parameter. We have this differencing component

6“Stationary” means the autoregressive structure is constant across time, i.e., that the auto-correlation
remains the same.
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because the lagged Yt−1 also includes those structural components and we would not
want them to be counted twice. Overall, the lagged covariates allow us to estimate and
then subtract out the lagged structural part of the Yt−1, leaving the lagged residual as
desired.

Alternate estimation strategies. We use the lagged outcome model and OLS due
to its simplicity, and to take advantage of the ability to easily simulate from the fitted
model. Other options are possible, which we briefly acknowledge and outline next.

First, there is Feasible Generalized Least Squares (FGLS). Here we would explicitly
model the residual structure as AR1 and use feasible generalized least squares by first
estimating the model using simple OLS, and then estimating the implied residual matrix
with the empirical residuals. While entirely viable, we wanted to take full advantage
of the sim function from the arm package; we therefore instead use OLS in order to
leverage existing packages to obtain the pseudo-posteriors. That being said, FGLS coupled
with classic maximum likelihood estimation would provide asymptotic confidence intervals
based on the normal approximation.

One could also employ iterative model fitting. In particular, if we had the εt−1 we could
use them as covariates in our regression instead of the Yt−1. This motivates first estimating
them using a model without lagged covariates, and then using those estimates in a second
run of our model. First fit Yt = f(Xt) + εt using OLS. Then calculate D̂t = Yt − Ŷt with
Ŷt = f̂(Xt). Then refit a model of

Y
(2)
t = f(Xt) + ρD̂t−1 + ωt

and calculate new differences

ε
(2)
t = Yt − Ŷ (2)

t = Yt − f̂ (2)(Xt).

Repeat until convergence. Under this approach to get a model fit, it is unclear how to
simulate to get prediction uncertainty, or how to otherwise codify uncertainty of our model
parameters correctly.

Finally, one could simply specify the model and fit it using a Bayesian model-fitting
package such as stan (Carpenter et al., 2017). This would be functionally equivalent to
the above, although there would no longer be need to incorporate lagged covariates or
outcomes as the model could directly work with the latent residuals. One would also have
to explicitly choose priors, and this approach may feel less accessible to many practitioners
than our approach rooted in classic linear regression.

Appendix C: Adjusting for time-varying covariates

The monthly outcomes in our examples are summaries of individual data, and if the
composition of the individual data are changing we might see changes in the aggregate
summaries due to factors other than the policy reform being investigated. For example,
in our context, the charges associated with an arrest fall in different gross categories,
and these categories tend to be treated differently due to having generally different levels
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of severity. For example, in Mecklenberg, charges fall into traffic, misdemeanor, and
felony and, as shown on Figure 7a, the overall rates of misdemeanors is falling from
before the policy shift to well after. This means the mix of cases (as captured by being
misdemeanor, felony, or traffic related) at each month is changing, and so post-policy we
have proportionally more felony cases, which are typically more severe and would likely
involve greater rates of detention. Thus our outcome of interest, percent bail, may be
being impacted by this changing case mix. We therefore want a sensitivity check to test
whether our overall findings are being partially or fully driven by this change in case
composition, rather than change in how cases are being treated by the judicial system.
In other words, we want to adjust for case composition in our estimation process.

Post-stratification is one approach for handling this type of problem when one has
access to the individual data composing the overall outcome. With post-stratification,
instead of calculating the simple average outcome for a month, we reweight the individual
cases so that the proportion of each case type matches some canonical distribution. For
example, in Mecklenberg, 33% of the charges are felony, 54% misdemeanor, and 13% traffic
across all our post-policy months. Therefore, for each month, we calculate an adjusted
rate of bail by first reweighting the cases in that month to match these percentages before
averaging to obtain the outcome. (This is the same as first calculating the proportion of
cases given bail for each of the three categories, and then averaging these proportions with
the weights of 33%, 54% and 13%.) After doing this for each month, any differences in
our adjusted outcomes across months can be ascribed to how the cases are being treated
differently rather than being due to different types of cases, as captured by the covariates.

This attribution does rely on the assumption, however, that the measured covariates
being adjusted for capture all the case differences that are both changing across time
and are associated with the outcome. For example, if the proportion of misdemeanors is
going down, but the (unobserved) severity of the remaining misdemeanors is going up,
then a change in outcome may still be connected to changing case mix as captured by this
unobserved severity. That being said, using post-stratification as an adjustment technique
can help explore whether it is plausible that observed potential impacts are simply due
to change in case mix, and provide a good way of conducting a sensitivity check on one’s
results. This approach has ties to matching or propensity score reweighting. In particular,
we refer to template matching (Silber et al., 2014), where the mixture of patients within
each of a collection of hospitals are reweighted to match a reference distribution to ease
comparability across the hospitals. Here, we would match across time.

Reweighting for post-stratification

The first step for reweighting is to identify the target case mix that we wish to reweight
each month to match. We recommend doing this via identifying a time period of interest
(e.g., the year following the policy change) and calculating the proportion of cases of each
type in that period, storing them as a vector of proportions π∗. For Mecklenberg, to
illustrate, this is

π∗ = (πF∗, πM∗, πT∗) = (33%, 54%, 13%).
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The next step depends on the type of outcome being considered. There are two core
types of outcome: total counts and mean outcomes. The former is, for example, total
number of cases where the defendant failed to appear (FTA) at a scheduled court date.
The second is, for example, the average days spent in jail for a case, or the proportion of
cases that were given bail. (The proportion of cases assigned bail can be thought of as
the average of a 0/1 indicator variable for getting assigned bail.)

To adjust the outcomes based on the proportions of cases in each subgroup, we first
calculate the aggregated outcome for each subgroup for each month t. Call these Y s

t ,
with s being in our case F , M , or T . This could be total count, average outcome in the
subgroup, or the proportion of the subgroup with a given outcome.

Next we re-weight the observed overall outcome (there is no modeling here) depending
on type of outcome. For means and proportions, we calculate

Y ∗t =
∑
s

πs∗Y s
t .

For count, we calculate, if we let Nt be total number of cases at month t and N s
t total

number of cases in subgroup s at month t,

Y ∗t = Nt

∑
s

πs∗
Y s
t

N s
t

This formula comes from first changing our outcome to the mean outcome in the group,
getting the estimated mean for the whole month using the group weights, and then scaling
back to raw count.

We use the above formula to adjust all months, both pre- and post-policy. This gives
an adjusted time series where we have controlled for the strata considered. This series
could diverge from the raw series, if the proportions are changing and if the average
outcomes Y s

t differ across s.
We now, at this point, simply fit our normal ITS model on the adjusted series. This

is effectively weighted regression, where we have re-weighted units at the individual level.
(It is a bit odd in appearance in that we do not model the individual level units but
instead aggregate.)

Remark. Other adjustment approaches are also possible. One alternate method of
post-stratification would be to divide the cases into subgroups and fit several distinct ITS
models, one for each subgroup. Unfortunately, especially given our approach to handling
seasonality and the autoregressive structure, we would want to account for possible depen-
dence between the subgroups (e.g., they all may have higher or lower outcomes in a given
month in some correlated fashion). How to do this when each subgroup is fit separately
is unclear. This is why we instead reweigh each month by the subgroup proportions and
then fit the ITS model to the resulting combined series.

One could alternatively implement a version of the above scheme with a single model-
ing step that includes covariates, such as the proportion of cases in the three categories,
and trend by covariate interactions. In particular, one would add interaction terms be-
tween the intercept and the time covariates and the proportion in each group to the
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(b) Adjusted impact on bail setting

Figure 7: Mecklenberg results adjusted by charge type.
At left we see the number of misdemeanors falling at a non-linear rate; this causes the

mix of cases to be changing in a complex way over time. At right our adjust rate of bail
setting and associated impact analysis when we reweight each month to have a canonical

mix of cases.

model. The estimated coefficients would then be averaged together after the model fit-
ting step. This approach is most similar to “controlling” for variables in a regression.
These interaction terms effectively allow each subgroup to have its own structural model.
Unlike the simpler approach above, this approach could even be extended to allow for
completely different time trends for the different subgroups and could be used to improve
the face validity of the model if there were substantive reasons to believe such variation
were present.

The simple version we presented above adjusts the raw data by aggregating the data
with weights, and then conducts the analysis on a single aggregated dataset. More com-
plex versions are to in effect fit individual models to the subgroups, and then aggregate
the model results. This could in principle be more powerful as we are using the proportion
of cases in a given month as a covariate to predict variation, which could lead to smaller
standard errors. Unless these proportions are highly predictive of outcome, the gains from
this will likely be minimal.

All of these alternative approaches could potentially have benefits, especially if dif-
ferent subgroups were believed to have substantially different trends. We leave exploring
these directions more fully to future work.

Case study: A sensitivity check for Mecklenberg

We can use post-stratification to investigate whether our original results are sensitive to
the changing case mix of cases in Mecklenberg over time. To do this we first calculate what
proportion of the charges were in each class post-policy (we select post-policy to capture
current trends rather than historical, but this is a design decision up to the analyst). As
stated above, we find 33% of the charges are felony, 54% misdemeanor, and 13% traffic.
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We then reweight each month pre- and post-policy, getting an adjusted rate of bail setting
as the weighted average of the rates within each of our three groups. Finally, we use our
standard lagged outcome analysis on these reweighted totals to get our predicted trend
line. The results are on Figure 7b; note how both our counterfactual extrapolation and
the observed trend are impacted by the reweighting. That being said, we see little change
in the overall impacts, and therefore our substantive results remain the same. There is no
evidence that the results are substantially driven by the change in case mix, as measured
by category of case.

Appendix D: R Package overview

We provide an R package, simITS, to implement the methods described in this paper. The
documentation with the package is more comprehensive than this appendix, and includes
a vignette walking through parts of the Mecklenberg and New Jersey analyses, but we
provide a brief overview of the New Jersey analysis here as well.

To fit a seasonality model, first specify the functional form of the model:

my.model = make.fit.season.model( ~ temperature + Q2 + Q3 + Q4 )

This creates a model that can then be fit to data; the named variables are all assumed
to be in the dataset we will eventually analyze. The following code fits and displays our
model to the pre-policy data only (Y is the outcome, stored as another column in our
data), and does not include lagged covariates:

mod = my.model( dat = filter( newjersey, month <= 0 ), "Y",

lagless = TRUE )

summary( mod )

In the above, mod is the result of simple linear regression, and the summary() call will
print out the estimated coefficients and overall R2.

To conduct the simulation, first add the lagged covariates needed (the package will
automatically extract the needed covariates given a specified model) and then make the
call to process the outcome of interest:

newjersey = add.lagged.covariates( newjersey,

outcomename = "Y",

covariates = my.model )

envelope = process.outcome.model( "Y", newjersey, t0 = 0,

R = 1000,

summarize = TRUE,

smooth = FALSE,

fit.model = my.model )

If there are multiple outcomes, simply change the outcome name in the call above. Loess
smoothing can be done by changing the flag for smooth to TRUE.

We can make our plot as follows (this method uses the ggplot plotting environment):
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plt <- make.envelope.graph( envelope, t0 = 0 )

plt

See the package documentation for further specifications and details of the resulting ob-
jects returned from these primary method calls.
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